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Atómico Bariloche, Av. E Bustillo 9500, R8402AGP San Carlos de
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Abstract. Along with experiments, numerical simulations are key to gaining
insight into the underlying mechanisms governing domain wall motion in thin
ferromagnetic systems. However, a direct comparison between numerical simula-
tion of model systems and experimental results still represents a great challenge.
Here, we present a tuned Ginzburg–Landau model to quantitatively study the
dynamics of domain walls in quasi two-dimensional ferromagnetic systems with
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perpendicular magnetic anisotropy. This model incorporates material and exper-
imental parameters and the micromagnetic prescription for thermal fluctuations,
allowing us to perform material-specific simulations and at the same time recover
universal features. We show that our model quantitatively reproduces previ-
ous experimental velocity-field data in the archetypal perpendicular magnetic
anisotropy Pt/Co/Pt ultra-thin films in the three dynamical regimes of domain
wall motion (creep, depinning and flow). In addition, we present a statistical
analysis of the domain wall width parameter, showing that our model can pro-
vide detailed nano-scale information while retaining the complex behavior of a
statistical disordered model.

Keywords: interfaces in random media, defects, dynamical processes, numerical
simulations
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1. Introduction

Elastic driven interfaces are ubiquitous in nature. They appear in systems as diverse as
contact lines in wetting [1, 2], earthquakes [3], vortices in type-II superconductors [4], and
domain walls in ferroelectric [5–7], ferrimagnetic [8] and ferromagnetic [9, 10] materials.
The latter, particularly, present very promising technological applications [11] related to
the possibility of tuning domain wall motion with controllable parameters such as electric
currents or magnetic fields. The behavior of the velocity in these systems, however,
depends not only on these external parameters but also on the relevant interactions
between magnetic moments, the pinning disorder of the material, and thermal activation.
Having a theoretical approach that accounts for the interplay of all these ingredients
and allows for a direct comparison between simulations and experiments is of great
importance for the design and engineering of magnetic materials.
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A general theory for the velocity-field response in magnetic systems was derived in
the context of the elastic-line model [12–19]. Within this formalism, the domain wall
is modeled as an elastic interface by considering solely its position; any internal struc-
ture is neglected, thus ignoring any possible dynamics (e.g. precession) of the magnetic
moments that compose it. While in a perfectly ordered system the velocity-field relation
is simply linear, quenched disorder is responsible for a much more complex behavior.
When considering an applied external magnetic field H, and in the presence of quenched
disorder, there is a field Hd—called the depinning field—below which no domain wall
motion can exist at T = 0. At finite temperature, a thermally activated creep regime
appears at low fields following the law ln(v) ∝ H−µ, where the universal creep exponent
is given by µ = (2�eq + d− 2) / (2− �eq) with d the dimension of the interface and �eq
the equilibrium roughness exponent. In a one-dimensional interface, then, the theoret-
ical value �eq = 2/3 [20, 21] implies a creep exponent µ = 1/4, which has been found
experimentally as well [9, 22–26]. In the depinning regime, just above Hd, the velocity
presents universal power-law behavior associated to the underlying T = 0 transition.
Finally, v ∝ H at higher fields, in what is known as the �ow regime. The proportional-
ity constant in this linear behavior is the mobility, and is the same than in the system
without quenched disorder.

From the standpoint of statistical mechanics, a suitable model to study magnetic
domains is given by Ginzburg–Landau theory, with a proper inclusion of the disorder of
the media [27–29]. This theory was originally proposed as a mean-field approach to con-
tinuous phase transitions, relating the order parameter to the underlying symmetries of
the system. Moreover, simple dissipative dynamics for the order parameter can be con-
sidered, allowing to study time-dependent phenomena [30]. When considering disorder,
the obtained domain wall dynamics using this scalar-field approach presents the same
non-linear response (creep, depinning and flow) for the velocity-field curve as observed
in experiments [29].

Models such as the aforementioned elastic line and Ginzburg–Landau theory have
proven useful to understand the universal characteristics of domain wall dynamics [29].
In particular, experiments and theoretical predictions are in good agreement for the
values of the critical exponents µ, � and �, the two latter characterizing the velocity
in the depinning regime [v(H,T → 0) ∼ (H −Hd)

� and v(Hd,T ) ∼ T�]. However, these
statistical models miss material-dependent characteristics, thus falling short in the con-
nection to experiments. Micromagnetic theory, on its turn, provides important insight
into the physical properties of magnetic materials, with particular care of material and
experimental parameters [31–36]. Although micromagnetic simulations are particularly
useful to describe the dynamics of magnetic textures in flow regimes at zero temperature,
taking into account the contributions of domain wall pinning and thermal fluctuations
to obtain critical behavior is not straightforward.

In this work, we present a connection between micromagnetism and Ginzburg–
Landau theory that allows us to quantitatively study ferromagnetic ultra-thin films by
means of a tuned scalar-field model. In particular, this material-dependent approach
incorporates thermal fluctuations following the micromagnetic prescription, which
results in a non-trivial noise term. As shown in figure 1, we are able to simulate the
growth of magnetic domains and the concomitant domain wall dynamics, which can be
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Figure 1. Spatial distribution of the out-of-plane magnetization mz for a two-
dimensional system with quenched Gaussian Voronoi disorder (� = 0.19 and
� = 30 nm, see section 3) at T = 300 K before and after applying an out-
of-plane magnetic-field pulse of (a) µ0Hz = 0.45 T during �t = 12 ns, and
(b) µ0Hz = 0.007 T during �t = 10 µs. While the white strip corresponds to the
initial relaxed domain with mz = +1, gray represents its growth after the pulse.
Black stands for mz = −1.

directly compared with polar magneto-optical Kerr effect (PMOKE) experiments (we
will return to figure 1 in section 3). We use previous experimental velocity-field data in
Pt/Co/Pt ultra-thin films [22] to test our material-dependent model. Not only we find
good agreement in the three regimes of domain wall motion, but we also recover univer-
sal features as the creep exponent. In addition, we report new results regarding domain
wall width fluctuations in this system, which are typically not exposed by PMOKE
experiments. In this way, our tuned Ginzburg–Landau model shows great versatility to
perform numerical simulations of domain wall dynamics in ultra-thin magnetic materials
with perpendicular magnetic anisotropy.

2. From micromagnetism to the Ginzburg–Landau model

2.1. Ginzburg–Landau theory for magnetic systems

As mentioned in the previous section, from a statistical physics standpoint,
Ginzburg–Landau theory can be used to study magnetic systems by relying on the
symmetries of the problem and considering the interactions via effective quantities.
Since we are interested in studying the case of a ferromagnetic thin film with perpen-
dicular easy-axis anisotropy, the non-conserved scalar field �(r , t) is taken to represent
the out-of-plane component of the magnetization. In the limit of strong perpendicu-
lar anisotropy and strong damping [37], this generalized order parameter follows the
evolution equation

	t� = −Γ
�HGL

��
+ 
. (1)

Here, Γ is a damping parameter that sets the time scale of the problem, and 
(r , t) is
an additive, uncorrelated white noise that represents thermal fluctuations and satisfies
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〈
(r, t)〉 = 0 and 〈
(r, t)
(r′, t′)〉 = 2ΓT�(r − r′)�(t− t′), (2)

where T is the temperature [30]. As discussed in [27–29], the free-energy Hamilto-
nian HGL can be modeled by following the modified ‘�4 model’ and consists of three
contributions:

HGL = �
� |∇�|2

2
dr + �

� �
−�2

2
+

�4

4

�
dr − h

�
� dr. (3)

While the first term incorporates the rigidity of the system with elastic stiffness �, the
second one represents easy-axis anisotropy (favoring the values � = ±1) by means of a
two-well potential with an energy barrier �. The last term, on its turn, amounts to the
inclusion of an external magnetic field h perpendicular to the film.

Although the range of � does not need to be bounded per se, its physical interpreta-
tion as a component of the magnetization implies that |�| � 1. In order to promote this,
a term h�3/3 can be subtracted from the external field contribution, resulting in a term
proportional to h(1− �2) in the evolution equation [28]. Taking all these ingredients into
account, the Langevin equation for the modified Ginzburg–Landau scalar-field model is

(1/Γ) 	t� = �∇2�+ (��+ h)
�
1− �2

�
+ 
̃, (4)

with 
̃ = 
/Γ. As shown in [30], the equilibrium value of � yields domain walls with

a width parameter given by
�

2�/� and a domain wall energy equal to (4/3)
√
2��.

These results will be useful in section 2.3, where we establish the connection between
this scalar-field model and micromagnetism.

With some variations, this model has been widely used to generically model the
magnetization in quasi two-dimensional systems [27–29, 37–39]. Nonetheless, the lack of
material and experimental parameters make it unsuitable for quantitative comparisons
with real systems.

2.2. Micromagnetic theory

In this section, we present the micromagnetic approach to the dynamics of a ferromag-
netic thin film with perpendicular magnetic anisotropy. A ferromagnet is a system that
presents a net magnetization (that is, magnetic moment per unit volume) in the absence
of external field. It can be thought of as composed by cells of a given volume which is
large compared to the atomic scale, and containing a great number of atomic magnetic
moments. Then, micromagnetism provides a way to model the evolution of the magneti-
zation M (r , t) in each cell by following the stochastic Landau–Lifshitz–Gilbert (SLLG)
equation. In the Landau formulation (see [40] and references therein) it is given by

	tM = − �µ0

1 + 
20
M ×

�
(Heff + Hth) +


0
MS

M × (Heff + Hth)

	
, (5)

where 
0 is the adimensional damping constant, µ0 is the vacuum permeability, � is the
gyromagnetic ratio and M S is the saturation magnetization. While the effective field is
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derived from the free-energy Hamiltonian H of the system by the relation

µ0Heff = − �H
�M

, (6)

Hth = fxêx + fyêy + fzêz is a random vector field that represents thermal noise. The
fluctuating terms of different cells are independent from each other, as well as the three
components, and they are uncorrelated in time. The statistical properties of this vector
white noise are then

〈f�i(t)〉 = 0 and 〈f�i(t)f�j(t′)〉 = 2D����ij�(t− t′) (7)

for cells � and �, Cartesian coordinates i, j = x, y, z, and

D =

0kBT

�VMSµ2
0

, (8)

with kB the Boltzmann constant, T the temperature of the system and V the volume
of the cell.6

In this work, the general micromagnetic formalism introduced above is adapted to
study the magnetization dynamics in ultra-thin films with dominant uniaxial anisotropy.
We are interested in studying the evolution of the z component of the magnetization
in a quasi two-dimensional system. We consider exchange interactions with stiffness A,
effective easy-axis anisotropy with strength K, and Zeeman coupling to an out-of-plane
magnetic field of intensity µ0Hz. The free energy of the system is given by

H = A
�

|∇m(r)|2 dr −K
�

[êz · m(r)]2dr − µ0HzMS

�
êz · m(r)dr, (9)

where m = M/MS = mxêx +myêy +mzêz (with the norm constraint |m | = 1).
Following the prescription of equation (6) to calculate the effective field, equation (5)

for the z component of the magnetization can be written

1 + 
20
�µ0
0

	tmz = a∇2mz + (kmz +Hz)
�
1−m2

z
�

+ fx (my/
0 −mxmz) + fy (mx/
0 −mymz)

+ fz
�
1−m2

z
�
+N , (10)

where for simplicity we have defined a = 2A/MS, k = 2K/MS (known as the anisotropy
field), and

N = amz


(∇mx)

2 + (∇my)
2 + (∇mz)

2
�
− a


0

�
mx∇2my −my∇2mx

�
. (11)

The full micromagnetic description is comprised of the other two coupled equations for
mx and my, analogous to equation (10), and the norm constraint. Within this formalism,

6 It is not straightforward to apply this methodology to the continuous theory of micromagnetism [31]. However, for a discrete
formulation like ours, the thus defined random field has been shown to correctly reproduce equilibrium thermodynamics [41].
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static domain wall solutions are described by domain wall width parameter equal to
Δ0 =

�
A/K (the width itself is �Δ0) and a domain wall energy given by � = 4

√
AK. 7

2.3. Linking the models

Our aim here is to obtain an effective description in terms of mz using one single
evolution equation. This will represent a loss of generality of the formalism pre-
sented in section 2.2, but it will allow us to link the micromagnetic theory with
the Ginzburg–Landau statistical model of section 2.1. To achieve this, we uncou-
ple equation (10) from the ones for the other components of m by writing
mxy = mxêx +myêy as a function of mz ≡ mz(x, y). As shown in figure 2(a), we do so
by writing

mxy =
�
1−m2

z

�
cos �

∇mz

|∇mz|
+ sin �

∇× (mz êz)

|∇ × (mz êz)|

	
(12)

with a constant �, thus locally fixing the direction of the in-plane magnetization. In
this way, the in-plane part of m is decomposed in one component in the direction of
the gradient of mz and one component orthogonal to it. Note that fixing the value of
� reduces the number of degrees of freedom so that only one evolution equation—in
this case, that for mz—is needed to describe the magnetic properties of the system. The
angle � is a constant that generally relates mxy to ∇mz in each cell. Indeed, although we
used a curved domain wall for the diagram in figure 2(a), the proposed parametrization
is actually independent of the existence of a domain wall in the system: any finite ∇mz
implies a finite mxy. In the case where a domain wall is present, the angle between its
normal and the in-plane magnetization in the center of the wall (where mz = 0) is equal
to �. In this way, choosing the angle for the parametrization implies deciding a priori
if the wall will be Bloch (� = �/2, 3�/2; see figure 2(b)), Néel (� = 0, �; see figure 2(c))
or anything in between, and its chirality.

Equation (12) is used to parameterize the magnetization in terms of an angle � that
is not only constant along the wall but also does not change in time. As stated at the
beginning of this section, this represents a great simplification of the SLLG equation.
At variance with the elastic-line model discussed in section 1, the micromagnetic formu-
lation presents non-trivial behavior even in the absence of quenched disorder, with the
velocity-filed response of the domain wall coupled to the dynamics of the magnetiza-
tion orientation inside the domain wall [42]. For a driving field lower than the so-called
Walker field (H < HW), the orientation of the magnetization within the domain wall
remains stationary and the velocity follows a linear regime with v ∝ 1/
0. On the con-
trary, above HW magnetization inside the domain wall precesses during the motion. The
velocity initially decreases with increasing drive and then reaches an asymptotic linear
regime for H � HW with v ∝ 
0/(1 + 
20). For most experiments (as those reported in
[22]), where disorder must also be considered, the depinning field Hd is significantly
higher than HW, so above the creep and depinning regimes only the linear asymptotic
precessional flow is observed. There, domain wall displacement is achieved through the

7 Strictly, these expressions are valid when no dipolar coupling is considered, as in our case, or in a system with dipolar interactions
and Bloch-type walls. Otherwise, a term proportional to the demagnetizing energy must be added to K (see [42]).
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Figure 2. Local parametrization of the in-plane magnetization. (a) Fixing the angle
� allows writing mxy in terms of components parallel and perpendicular to ∇mz.
The choice of � determines the kind of domain walls present in the system, two par-
ticular cases being (b) Bloch and (c) Néel walls. In these configurations, m (arrows)
rotates perpendicularly to ∇mz and ∇× (mzêz), respectively, and is contained in
the corresponding gray planes.

repeated nucleation, propagation and annihilation of Bloch lines [42–44]. At first sight,
this could not be modeled with a fixed �. Nonetheless, as justified at the end of this
section, our tuned Ginzburg–Landau approach will end up being independent of this
angle, and thus able to effectively model the precessional regime.

The next step in relating micromagnetism and Ginzburg–Landau theory is to assess
the significance of the term N as defined in equation (11). If we set it to zero, it is
easy to see that, at zero temperature, equation (10) becomes analogous to equation (4).
Following section 2.1, domain walls obtained in these conditions will have a larger width
parameter given by

�
2A/K and a smaller domain wall energy equal to (4/3)

√
2AK.

Explicitly including N in equation (10) can then be avoided if two new parameters Aeff

and Keff are conveniently defined in order to provide the proper micromagnetic domain
wall width parameter and domain wall energy mentioned at the end of section 2.2. The
effective anisotropy and stiffness constants can be found by simply solving the system
of equations [30, 42]

and thus obtaining Aeff = 3A/2 and Keff = 3K. Taking this into account, equation (10)
becomes

https://doi.org/10.1088/1742-5468/abe40a 8

https://doi.org/10.1088/1742-5468/abe40a


J.S
tat.

M
ech.

(2021)
033211

Tuning Ginzburg–Landau theory to quantitatively study thin ferromagnetic materials

1 + 
20
�µ0
0

	tmz = aeff∇2mz + (keff mz +Hz)
�
1−m2

z
�

+ fx (my(mz)/
0 −mx(mz)mz)

+ fy (mx(mz)/
0 −my(mz)mz)

+ fz
�
1−m2

z
�
, (15)

with aeff = 2Aeff/MS and keff = 2Keff/MS. Notice that we have written mx and my in
terms of mz via the parametrization presented in equation (12).

As shown in section 2.2, thermal fluctuations in micromagnetism are not included by
means of a trivial additive white noise. In equation (15), the multiplicative terms involv-
ing the random-field components fi make the noise different from zero only close to the
domain wall, ensuring at the same time that |mz| � 1. Despite the different temperature
implementation, identifying mz ↔ � makes it clear that evolution equation (15) has the
shape of the well-known Ginzburg–Landau model for phase transitions presented in
equation (4), where the factors of the model can now be expressed as

Γ =
�µ0
0
1 + 
20

, � =
3A
MS

, � =
6K
MS

and h = Hz. (16)

Equation (15) then constitutes the tuned Ginzburg–Landau model. It incorporates
material and laboratory parameters, as well as multiplicative thermal fluctuations.
Considering the approximations made, it also represents a simplification of the
micromagnetic model since it is written in terms of one single component of the
magnetization.

Finally, given that our model does not include in-plane interactions of any kind
(e.g. in-plane magnetic field, Dzyaloshinskii–Moriya interactions or dipolar coupling),
it should be noticed that the magnetic moments have no preference for any particular
value of the parametrization angle �. Indeed, this angle appears only in the tempera-
ture terms—which are basically random numbers—yielding identical results for both
Néel and Bloch walls. In the following section, numerical simulations of this model are
compared with experimental results measured by Metaxas and collaborators [22].

3. Domain wall dynamics

We now compare velocity-field curves calculated with the tuned Ginzburg–Landau
model and those obtained by PMOKE experiments. We solve equation (15) through
a semi-implicit Euler scheme [29, 45], and perform simulations following the typical
PMOKE experimental protocol (see for example [9, 22, 29]). The L× L× s system of
side L and thickness s is initialized with a narrow mz = +1 stripe (white regions in
figures 1(a) and (b)) surrounded by mz = −1, and is allowed to relax at zero magnetic
field. Then, a positive field Hz is applied, favoring the growth of the +1 domain until
a certain maximum area of the growing domain is reached. At that point, the field
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is removed and the system is again allowed to relax. We calculate the domain wall
velocity as

v =
1

2L
�a
�t

, (17)

with �a the difference in area between the final and initial relaxed configurations (gray
regions in figures 1(a) and 1(b)) and �t the duration of the field pulse.

The material parameters are taken to be those of Pt(4.5 nm)/Co(0.5 nm)/Pt(3.5 nm)
ultra-thin films at T = 300 K, as reported by Metaxas et al [22]: A = 1.4× 10−11 J m−1,
K = 3.2× 105 J m−3 and MS = 9.1× 105 A m−1. We work on a system of side
L = 8.192 µm and thickness s = 0.5 nm, with simulation cells of volume V = l × l × s
with l = 2 nm. As shown in figure 3(a), the damping constant is fitted in order to recover
the flow regime observed in the experiment; we find 
0 = 0.255, i.e. within 6% difference
from the value 0.27 reported in [22]. This quantity is compatible with the precessional
flow suggested in [22] and recently confirmed in [46]. The reason for this might be
related to the fact that, as no in-plane contributions to the free energy are being
considered, the Walker field is HW = 0 [42]. In this limit where Hz � HW for any
finite field, the model can be thought to effectively be in the precessional regime even
though the angle between the domain wall and mxy is a constant. This fact is quite
reasonable given that—as explained at the end of section 2.3—equation (15) does not
depend on �.

Afterward, quenched disorder is included by means of a Voronoi tesselation with
mean grain size �. The anisotropy is modified as keff → keff [1 + ��(r)], where � is the dis-
order intensity and �(r) has a constant value for each grain obtained from a Gaussian
distribution with zero mean and unit variance [29]. To determine the disorder param-
eters of the system, we simulated domain-wall dynamics with diverse values of � and
� (figure 4) for a field in the creep regime (µ0Hz = 0.01 T). The resulting velocities
are compared with the corresponding experimental value, and the best-fitting set of
parameters is found. The best agreement with the experimental velocity is obtained
with � = 0.19. For this value, there is a range for the Voronoi grain size, � � 30 nm,
where the agreement is good. The Voronoi grain size can be associated with the char-
acteristic disorder length scale � and it has been shown that typically Δ0 < � < Lc

(see [19]), where Lc is the Larkin length. Given that in our system Lc ≈ 40 nm [19] (and
Δ0 = 6.6 nm), in the following we shall use � = 30 nm ≈ �. The disorder intensity, on its
turn, represents the width of the anisotropy distribution, which is not known a priori .
Thus, fitting the disorder parameters as described above in a family of samples would
allow for a very interesting characterization of disorder in real materials.

We have so far tuned the missing parameters of the problem to represent Pt/Co/Pt
thin films. The value of the damping was found by comparing simulations of a system
without disorder with the experimental flow regime. The disorder, on its turn, was
characterized using only one point of the experimental velocity-field curve in the creep
regime. As shown in figure 3(b), and in a remarkable display of robustness, simulations
with the aforementioned parameters allow us to quantitatively reproduce experimental
v vs Hz data [22] in the three regimes: creep, depinning and flow. This validates the
use of the proposed model to obtain domain wall velocities for systems with strong
perpendicular magnetic anisotropy. Although our simulations are material-dependent,
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Figure 3. Comparison of our results (squares and circles) with experimental data
(crosses) from [22]. (a) A system without quenched disorder recovers the expected
velocity vs magnetic field linear behavior, with a mobility consistent with the exper-
imental value (dashed line). The only fitting parameter is the damping constant,
which was found to be 
0 = 0.255, which is close to the value 0.27 reported in
[22]. (b) The creep regime is also recovered by simulating a system with Gaus-
sian Voronoi disorder characterized by � = 0.19 and � = 30 nm, at a temperature
T = 300 K. The solid line is a fit of the experimental data in the linear region of
ln(v) vs (µ0Hz)

−1/4, while the dotted line shows the position of the depinning field
µ0Hd = 0.023 T [22] in the creep plot.

universal features like the creep exponent µ are clearly recovered. Also, in spite of being
a scalar-field version of the SLLG equations, our model is the first to quantitatively
reproduce these experimental results. Indeed, a previous attempt to fit the same data
can be found in [46], but full micromagnetic simulations were performed at T = 0 only
[47]. In [48], on its turn, finite-temperature numerical simulations of a micromagnetic
model were used to study the velocity-field response in a related family of materials
(Pt/Co/AuxPt1–x). Although no direct comparison with the creep regime was made,
results present good agreement in the depinning and flow regimes.

Finally, we discuss how fast the flow regime is reached in the tuned Ginzburg–Landau
model. It has been shown in numerical simulations using the elastic line model [49]
and the traditional scalar-field approach [29] that the crossover from the depinning
regime to the flow regime is rather slow, as compared to the experimental case [18]. The
slow approach to the flow regime is also present in our numerical model, as shown in
figure 5(a). As predicted in [50], the relative difference �v/v0 = (v0 − v)/v0 between the
simulated velocity v and the expected value in the flow regime v0 = mfµ0Hz, where mf

is the mobility, vanishes asymptotically as 1/(µ0Hz)
2 (figure 5(b)). Therefore, all these
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Figure 4. Different sets of parameters �, � of the Gaussian Voronoi disorder are
used in order to obtain the experimental value [22] of the velocity (black full line)
for a field µ0Hz = 0.01 T in the creep regime. We choose � = 0.19, � = 30 nm.

Figure 5. (a) Values of v vs µ0Hz in a system with quenched Gaussian Voronoi dis-
order, compared to the experimental data [22]. When disorder is on, the simulated
velocity takes really long to reach the flow regime fitted from the experimental data
(dashed line). (b) The relative difference between the expected flow velocity and
our numerical results goes asymptotically to 0 as �v/v0 ∼ 1/(µ0Hz)

2 (dot-dashed
line). Note that the two figures have different field scales.

models seem to share the slow approach to the flow regime, thus still missing some
ingredient of the experimental counterpart, which we conjecture might be related to the
in-plane component of the magnetization and the concomitant periodic variation of the
velocity.
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Figure 6. (a) Zoomed view of the system in the region wheremz changes from−1 to
+1. Gray levels represent the value ofmz in each cell, highlighting the internal struc-
ture of the domain wall. The wall is characterized by its position u(y) = {x0(y)}
(diamonds) and mean width parameter 〈Δ〉 (dots standing for x0(y)±Δ(y)). (b)
These values are extracted from the mz(x, y = const.) profile (crosses) by fitting
equation (18) (full red line). The profile shown corresponds to the dashed blue
line above. (c) Diagram of a tilted piece of the domain wall. The normal-width
parameter Δn(y) at x0(y) can be obtained from Δ(y) by taking into account that
tan� = �y/�x.

4. Domain wall width

While it allows us to simulate systems comparable to experiments, this tuned
Ginzburg–Landau model provides at the same time access to small length scales beyond
PMOKE capabilities. In this section we shall focus on the characteristic shape of mag-
netization profiles along a domain wall, which can be seen in figure 6(a). We begin by
slicing the system in paths parallel to the x axis. As shown in figure 6(b), we then fit
the resulting profiles with the expression

mz(x) = tanh

�
x− x0

Δ

�
, (18)

in order to determine the domain wall position x0(y) and width parameter Δ(y) for each
constant y. The position u(y) of the full domain wall is then given by the succession
{x0(y)}. The mean value of the width parameter measured along the x axis is presented
in figure 7(a) as a function of the out-of-plane magnetic field. It appears to have a slight
dependence on the field, increasing within the creep regime.

There are many ways in which the domain wall width can be defined. The previous
approach has the drawback of not taking into account the local tilting � of the domain
wall position u(y), which can be significant in presence of temperature and disorder.
This can explain, for example, the greater value of the width parameter at low fields
as a consequence of the increased roughness of the wall (see figures 1(a) and (b), cor-
responding to fields in the flow and creep regimes, respectively). Another possibility is,
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Figure 7. Domain-wall width parameter distribution. (a) The mean value of the
width parameter defined along the x axis (red) and perpendicularly to the wall
(purple), with error bars representing the corresponding standard errors �Δ/

√
2L

with �Δ the standard deviation. They both present very wide, asymmetrical dis-
tributions, as shown with the same color code for (b) µ0Hz = 0.007 T and (c)
µ0Hz = 0.45 T.

then, to measure the width normal to the wall at each point. As shown in figure 6(c),
Δn(y) for a given point x0(y) can be calculated from the width parameter measured
along the x axis as

Δn(y) = Δ(y) sin
�
arctan

�
2l

|x−1 − x1|

�	
, (19)

where we have defined x−1 ≡ x0(y − l) and x1 ≡ x0(y + l) as the positions of the previous
and next points in the wall, and 2l is their (constant) separation along the y axis.
Figure 7(a) shows the mean value of the normal-width parameter as a function of the

field. Now, 〈Δn〉 ≈ Δ0 =
�

A/K in all the field range.
Finally, it is worth mentioning that important fluctuations of the domain wall width

parameter are present, as observed in figure 6(a). From the values of Δ(y) and Δn(y)
we present in figures 7(b) and (c) the normalized histograms corresponding to two
values of the field in the creep and flow regimes. Two ingredients can in principle be
responsible for the width and asymmetry of the distributions: quenched disorder and
temperature. Indeed, a T = 0, � = 0 simulation yields a planar domain wall with a
probability distribution for both Δ and Δn consistent with a Dirac delta centered in
Δ0. As mentioned in section 3, disorder is introduced as a Voronoi tesselation where
each grain of mean size � has an anisotropy constant given by a Gaussian distribution
centered in keff with variance �2. Consequently, when L � � � Δ0 as in our case, finite
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Figure 8. Probability distributions of the normal-width parameter measured at
different temperatures for µ0Hz = 0.45 T (the purple curve is the same as in
figure 7(c)). A plot of equation (20) (dotted line) for � = 0.19 shows the effect of
the quenched disorder and describes the distribution found at T = 0. The vertical
line highlights the position of Δ0.

values of � imply a probability distribution for the normal-width parameter8 that can
be written as

P (Δn) =
Δ2

0

Δ3
n

2√
2��2

exp




− 1

2�2

�
Δ2

0

Δ2
n

− 1

�2
�

, (20)

where we have used the fact that Δ0 =
�

2aeff/keff (see equation (13)). Figure 8 shows a
plot of equation (20) (dotted line) calculated with � = 0.19 as used in the simulations.
The excellent agreement between this curve and the normalized histogram obtained for
T = 0 at µ0Hz = 0.45 T shows that quenched disorder alone induces an asymmetrical
distribution of the normal-width parameter. However, as can be observed comparing
with finite temperature data in figure 8, thermal fluctuations are the main responsible
for the width of the distributions in figures 7(b) and (c), explaining why behaviors so
similar are found in such different regimes.

At this point, we can note that in the full SLLG formulation, where the direction �
of the in-plane magnetization is not kept fixed, the existence of Bloch lines within the
domain wall would affect the distribution of the width parameter (calculated both along
the x axis and perpendicularly to the wall). In particular, since the wall width at Bloch
lines tends to differ slightly from that of the rest of the wall, we would expect these
changes to be small. Although the presented model does not include that correction, it
still allowed us to assess the relevance of thermal fluctuations and quenched disorder
in the wall width distribution. In this way, we have shown that our model is capable
of providing detailed information on the nano-scale. An important perspective of this
work is, then, related to the possibility of exploring the consequences of a finite domain
wall width on the small length scale fluctuations [51, 52].

8 A distribution P (k′
eff) for the anisotropy random variable k′

eff = keff (1 + ��) defines a distribution for the normal-width parameter
P (Δn) = |dk′

eff/dΔn|P (k′eff ) via the relation k′
eff = 2 aeff/Δ2

n.
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5. Conclusions

We proposed a local parametrization of the in-plane magnetization in terms of the
out-of-plane component that implied fixing the internal angle of the domain wall. This
simplification of the full SLLG micromagnetic model allowed us to tune a previous
effective scalar-field approach [29], making it material-dependent. We used this model
to perform simulations of Pt/Co/Pt ultra-thin films, whose anisotropy constant, stiffness
and saturation magnetization were obtained from the literature [22]. The damping con-
stant was found to be within 6% of the reported value by considering the flow regime
obtained in previous experiments. The parameters characterizing the disorder of the
media, on their turn, were determined by comparing simulations with only one exper-
imental value corresponding to the creep regime. Nonetheless, we robustly obtained
a velocity-field curve that quantitatively reproduced experimental data in the three
regimes (creep, depinning and flow), finding a good correspondence with experimental
results for a large field range.

At the same time, we used our model to study phenomena at length scales out
of experimental reach. We showed that care needs to be taken when the domain wall
width is defined, in order to consider contributions of the local tilting. In particular, the
theoretical value for the domain wall width parameter Δ0 =

�
A/K was only recovered

in mean when the width was measured perpendicularly to the wall. We also studied the
distribution of the domain wall width parameter, which we found to be very wide and
asymmetrical mostly due to thermal effects.

Starting from the SLLG equation, and considering the energy terms described in
the text, we derived a simplified model for the dynamics of the out-of-plane magne-
tization component in the particular case where the angle � in equation (12) is fixed
along the domain wall. The link between Ginzburg–Landau type models, inspired in
statistical mechanics, and micromagnetic theory is thus given by properly writing the
different parameters of the scalar-field approach in terms of important material param-
eters such as the stiffness, the anisotropy constant and the saturation magnetization.
This, together with the micromagnetic prescription for thermal fluctuations and the
assumption that � is a constant, allowed us to reach the low-velocity, creep regime.
Quite remarkably, at the same time, it was possible to recover universal features like
the creep exponent and other characteristics of the underlying depinning transition.
The proposed tuned Ginzburg–Landau model allows direct comparison with PMOKE
experiments, representing thus a powerful numerical approach to domain wall dynamics
in magnetic systems with perpendicular magnetic anisotropy, and related problems.
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IDMAG team and the PAREDOM collaboration for useful discussions. We also thank
A B Kolton and E E Ferrero for their original contribution to the development of the
numerical code. P C G and S B wish to thank Université de Genève for its hospitality
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[38] Pérez-Junquera A et al 2008 Phys. Rev. Lett. 100 037203
[39] Marconi V I, Kolton A B, Capitán J A, Cuesta J A, Pérez-Junquera A, Vélez M, Mart́ın J and Parrondo J 2011
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