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MODEL FOR ONE OR TWO COMPONENTS

As discussed below our model can describe both, mat-
ter distributions of one or two components.

A. One component

Consider first the case of one particle species (I). The
governing equations are

∂tni −D∇2ni = δ(z)[kDmi(~r, t)− kAni(~r, z = 0, t)]

∂tmi + ~∇ ·~jmi = kAni(~r, z = 0, t)− kDmi(~r, t), (S.1)

where i = I, mI and nI are the particle densities on the
membrane and in the bulk, respectively. The constants
kA and kD denote the attachment and detachment rates
of particles to and from the membrane, D is the bulk
diffusion constant and ~jmI is the particle current on the
membrane. We write nI = n0 + n and mI = m0 + m,
where n0 is the particle density infinitely far away from
the membrane and m0 = kAn0/kD. The equations for n
and m are then the same as Eqs. (1) and (2). Note that
when the ratio kA/kD is varied one needs to maintain
the average density on the surface constant by adjust-
ing the density n0 in the bulk accordingly so that the
Ginzburg-Landau (GL) free energy remains symmetri-
cal in m. This can always be done except in singular
cases such as kA = 0.

The values of m are restricted to m ≥ −m0 for the
density of membrane-bound particles to be positive. For
the values of α and δ of the GL energy used in the
manuscript, we have minima at m1,2 = ∓1. Our sim-
ulations show that the values of the density m do not
exceed the interval [m1,m2] such that for m0 ≥ 1 the
density of membrane-bound particles is positive as re-
quired.

B. Two components

For the two species case, the four governing equa-
tions for particles of the two types can be written as in
Eq. (S.1) by taking i = I, II. In this case, mi and ni are
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the particle densities of type i = I, II on the membrane
and in the bulk, respectively. The constants kA and kD
denote the attachment and detachment rates of particles
i = I, II to and from the membrane. We assume that
both particle types attach and detach with the same
rates kAI = kAII = kA and kDI = kDII = kD. Further-
more, we set ~jm ≡ ~jI − ~jII = −µ~∇ δF

δm , such that the
dynamic equations for n = nI −nII and m = mI −mII

are again of the form of Eqs. (1) and (2) of the main
text.

The GL form depending on the density differences
can be used in the limit when the fluctuations of the
difference in density are small compared to the total
density on the membrane. This can be done in two
ways: either by considering a ”three-state problem” or
by assuming a constrained density on the membrane.

GL energy for a “three state” problem. Let us
first consider two independent species. The linear terms
can be added and these depend only on the density dif-
ference. The main question is whether one can write
a GL term that would also depend only on the density
difference, knowing that now the total density n1 + n2
can fluctuate on the membrane given the independence
of the two species.

The answer can be obtained by looking at e.g. a spin
one model where the three states σi = ±1 would repre-
sent species I and II and the state σi = 0 would be an
empty site. A phenomenological Hamiltonian account-
ing for the essential features of this situation is

H = −J
∑
(i,j)

σiσj −D
∑
j

σ2
j , (S.2)

where (i, j) denotes nearest neighbors on some lattice
and D is a parameter controlling the proportion of “oc-
cupied” versus “empty” sites. We consider J > 0 which
favours particles of the same species being close to each
other. One can derive the GL expression for this Hamil-
tonian by Feynman’s variational approach [1].

Let us denote by

Ti = 〈σ2
i 〉 (S.3)

the density of occupied sites. The difference between
the two species is given by

mi = 〈σi〉. (S.4)
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In the mean-field limit, one has for mi = 0

Ti =
2eD/T

1 + 2eD/T
. (S.5)

Small deviations from this state can be parametrized by

mi and xi with

Ti =
2eD/T

1 + 2eD/T
+ xi. (S.6)

A simultaneous expansion in mi and xi gives the free
energy
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(S.7)

For large values of D, the coefficient of the x2 term
in Eq. (S.7) is positive and large and thus essentially
imposes x = 0 i.e. the total density is essentially frozen
to its average value. In the same limit, the coefficients
of m2 and m4 terms converge to finite values, whereas
the term m2x is negligible compared to the m2 term
(except when extremely close to the transition point).
We thus recover the standard GL expansion in terms of
the density difference.

Constrained density on the membrane. As a
second case, let us consider the case where the lipids
of the membrane themselves exchange with the envi-
ronment. Let us assume that the (fluid) lipid mem-
brane consists of two kinds of lipids. The total two-
dimensional lipid membrane density mtot is constant,
and we denote the densities of lipids in the environment
by nI and nII with ntot = nI + nII being the total
lipid bulk density. Lipid molecules can leave the mem-
brane and new ones can go in. Since mtot = const,
each leaving lipid is immediately replaced by another
lipid molecule from the bulk. In this case, the free en-
ergy can be expressed solely in terms of the membrane
density m of lipids of type I.

Let kd denote the rate at which lipid molecules of
both kinds leave the membrane. Changes in the density
m due to the exchange of lipids with the bulk evolve
according to

ṁ = −kdm
nII
ntot

+ kd(mtot −m)
nI
ntot

.

This rate of change can be expressed in terms of the
densities of lipid I only

ṁ = −kdm
ntot − nI
ntot

+ kd(mtot −m)
nI
ntot

≡ −kdm+ kanI , (S.8)

where ka = kdmtot/ntot. Since ntot = const, Eq. (S.8)
has the same form used in the main article.

REDUCTION OF THE COUPLED DYNAMIC
EQUATIONS

The system of two equations for the surface membrane
and the reservoir{

∂tn = D∆n+ δ(z)[kDm− kAn(~r,z = 0,t)]

∂tm = µ∇2 δF
δm + kAn(~r,z = 0,t)− kDm

, (S.9)

can be reduced to a single equation. By defining
the Fourier transform of a function Ax as Ax =∫

dq√
2π
eixqÃq, we write

ñ(~q, z = 0, w) =
kDm̃(~q, w)Ĩ(~q, w)√

2π + kAĨ(~q, w)
, (S.10)

where Ĩ(~q, w) =
∫
dkz

1
iw+D(k2z+~q

2) . Replacing (S.10) in

(S.9) for Ĩ 6= 0 we obtain

∂tm = µ∇2 δF
δm

+ F−1
[(
K̃(~q, w)− 1

)
kDm̃(~q, w))

]
,

with K̃(~q, w) = 1√
2π

Ĩ(~q,w)
+kA

.

The time-Fourier transform of this quantity is

K̂(~q, t) = κe−q
2Dt
( 1√

πκt
− Erfcx(

√
κt)
)
, (S.11)

where κ = π
k2A
2D , and Erfcx(t) is the standard error func-

tion Erfcx(t) = et
2 2√

π

∫∞
t
e−z

2

dz.

NUMERICAL SOLUTION

We discretize Eq. 3 so that the surface particles’ den-
sity m is a matrix of elements (i, j) at each simulation
step p, with a given initial condition m(i, j, p = 0). To
obtain the evolution of m we use the standard Euler
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Figure S.1. Snapshot of systems that evolved during 104

simulation steps for different values of the absorption and
desorption rates, kA and kD, respectively, at fixed diffusion
constant D = 0.1. We consider two different initial condi-
tions (shown on the insets). The effect of matter exchange
between the membrane and the bath is observed at relatively
short times, especially for larger values of kD. The images
highlighted with dashed grey lines correspond to systems
that evolved under the instantaneous kernel (Eq. 5).

semi-implicit integration method for the time variable
and a five-point discretization of the Laplacian terms in
Fourier space for the spatial coordinates.

Compared to a standard Cahn-Hilliard equation we
have to consider an extra term involving the inte-
gral of our kernel. We approximate the integral
in Eq. 3 at a simulation step p by the Riemann

sum
∫ t
0
dt′K̂(~q, t − t′)m(~q, t′) ' ∑p−1

p′=M K̂(qi, qj , p −
p′)m(qi, qj , p

′)∆t, where K̂ is given by Eq. S.11, and
M is the number of previous configurations that will be
taken into account in the calculation.

SHORT-TIME EFFECTS

To further verify the multi-domain state of the sys-
tem when matter exchange is considered, we studied the
cases where the initial condition is a single domain, ei-
ther a bubble or a stripe, as shown in Fig. S.1. The effect
of the kernel is immediately observed in the simulations
for both considered kernels.

SHIFTED POTENTIAL

The Ginzburg-Landau free energy can be shifted

F =
∫

d2~r
{
−α2 (m−mc)

2 + δ
4 (m−mc)

4 + γ
2 (∇m)

2
}

-as done, for example in [2]. This implies that the initial
matter distribution in the membrane is shifted towards
one minimum by mc. As a result, the minima of the

kA = 1 kD = 10−2 kA = 1 kD = 10−3 kA = 10−2 kD = 10−3
τ−1 = 10−3

Figure S.2. Simulations were run under the same conditions
as in Fig. 2 of the main text: we start from a random initial
condition and let the system evolve for 105 steps. We now
consider a potential shift mc = 0.2.

kA = 0.1, kD = 10−3

~jm · x̂

-0.004 0.004

~jm · ŷ

kA = 1, kD = 10−3

~jm · x̂

-0.005 0.005

~jm · ŷ

τ−1 = 10−3

~jm · x̂

-0.008 0.008

~jm · ŷ

a) b) c)

Figure S.3. Top: steady-state configurations observed for a)
kA = 0.1 and kD = 10−3 after 106 simulation steps (same as
that shown in Figure 2 of our manuscript) b) and c) kA = 1,
kD = 10−3 and τ−1 = 10−3, respectively, both with shifted
potential mc = 0.2 after 105 simulation steps. Central: sur-
face matter current jm = −µ~∇ δF

δm
obtained for the three dif-

ferent configurations. Bottom: surface matter current along
the x̂ and ŷ-directions.

double-well potential are shifted towards larger values
of m and tilted to favour one minimum. We observe a
bubble-like distribution of domains as shown in Fig. S.2.

MEMBRANE CURRENT

The non-equilibrium character of our system is
clearly expressed through the presence of a current of
membrane-bound particles in a steady state, see Fig-
ure S.3. Due to this current, particles attach to and
detach from the membrane at different locations. For
ka = kD = 0, the current vanishes and the system even-
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tually settles into an equilibrium state that is globally
phase-separated. If one could write the velocity of the

membrane-bound particles ~v, the current of membrane-
bound particles ~jm written as ~jm = ~vm would give the
length scale of the domains through v/kD.
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