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Microscopic interplay of temperature and disorder of a 1D elastic interface
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We compute numerically the roughness of a one-dimensional elastic interface subjected to both
thermal fluctuations and a quenched disorder with a finite correlation length. We evidence the
existence of a novel power-law regime, at short lengthscales, resulting from the microscopic interplay
between thermal fluctuations and disorder. We determine the corresponding exponent (4is and find
compelling numerical evidence that, contrarily to available (variational or perturbative) analytic
predictions, one has (ais < 1. We discuss the consequences on the temperature dependence of the
roughness and the connection with the asymptotic random-manifold regime at large lengthscales.
We also discuss the implications of our findings for other systems such as the Kardar-Parisi-Zhang

equation.

Interfaces are ubiquitous in nature and provide re-
markable challenges both from the theoretical and ex-
perimental fronts [1]. Experimentally they span very
different underlying physics and characteristic scales,
with examples ranging e.g. from domain walls in fer-
romagnetic or ferroelectric thin films [2-9] to imbibition
fronts in porous media [10], fracture surfaces [11-13] and
growing fronts of cell colonies [14-16]. On the theory
side, describing the competition between the elastic in-
teractions that tend to order them, and the temperature
and system heterogeneity that hinder this tendency, is a
considerable theoretical challenge, with a resulting out-
of-equilibrium physics akin to the one of glasses [17].

A successful theoretical tool to study interfaces is
provided by the disordered elastic systems framework
[18-23]: interfaces are modeled as elastic objects evolv-
ing in a quenched disordered landscape and subject to
thermal noise. Remarkably, this minimal description is
enough to account for many key statistical features of
the geometry and dynamics of both static or driven in-
terfaces [24]. In particular, geometrical fluctuations are
known to be scale-invariant at sufficiently large length-
scales, evidenced by a power-law behavior of the so-
called roughness: the variance of the relative displace-
ment of the interface between two points separated by
a given distance. The associated roughness exponent
provides a robust signature of the universality class to
which an interface belongs [25], depending solely on its
dimensionality and on the nature of both its elasticity
and underlying disorder [22].

However, beyond this hallmark of universality, the
roughness prefactor itself encodes quantitative informa-
tion about the microphysics of a given system. La-
belled as non-universal, this roughness feature has been
poorly exploited up to now, despite of its crucial exper-
imental relevance for the quantitative determination of
characteristic scales and the validity range of theoret-
ical predictions in a given experimental setup [26-28].
At equilibrium its amplitude is fixed once and for all at

short lengthscales by the microscopic interplay between
thermal fluctuations and a spatially-correlated disorder.
The resulting temperature crossover below a charac-
teristic energy scale T.(§), associated to the disorder
strength and finite correlation length &, is thus a macro-
scopic ‘smoking gun’ of the spatial structure of micro-
scopic disorder [29-31]. Furthermore, analytical studies
using perturbative [32] or variational [29] methods sug-
gest at short-lengthscales a power-law excess roughness
—in addition to thermal fluctuations— with a character-
istic exponent (4is = 1. Unfortunately a quantitative
characterization of this microscopic interplay, usually
hidden below experimental resolution, has been difficult
to access up to now.

For static one-dimensional (1D) interfaces, under-
standing this interplay is also important to character-
ize both the finite-time and steady-state fluctuations
of the celebrated 1D Kardar-Parisi-Zhang (KPZ) equa-
tion [33, 34]. Considerable advances were achieved re-
cently on that front [35-39] allowing for the computation
of universal exponents and distributions [38, 39], but
mainly for spatially-uncorrelated noises. Nevertheless, a
regime which still resists an exact analytical treatment is
the low-temperature limit in a spatially-correlated dis-
order [30, 31, 40-46], despite of its high relevance to an-
alyze experimental realizations of KPZ [38, 47-49], or of
Burgers turbulence [50, 51] under a large-scale forcing.

In this paper, we address these issues by numerically
computing the roughness of an interface with both cor-
related disorder and thermal fluctuations. We unveil
the key regime where the interplay between temperature
and disorder leads to an excess of roughness — compared
to bare thermal fluctuations — and show that it relaxes
towards a power-law behavior Bgis(1) & Agis(T) 72545 at
short lengthscale r. Previous analytical but approxi-
mate predictions propose (4is = 1; yet, we show com-
pelling numerical evidence that (4;s < 1, which has im-
portant consequences on the temperature dependence
of the roughness and the connection to the asymptotic
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Figure 1. a) Snapshot of an initially flat interface described
by the field u(y, t), after having evolved under the gEW dy-
namics (1) up to a time ¢ = 10°. b) Roughness B(r,t) ob-
tained for interfaces that evolved during different times (in-
dicated by the color scale) averaged over 50 realizations (or
10 realizations for the larger studied times -indicated in the
color scale-) with and without disorder (continuous and dot-
ted lines, respectively) at T=0.01 and € = 0.1. Shaded fluc-
tuations are shown with the same color scale. Dashed lines
correspond to the analytical prediction (4) for the roughness
evolution in a clean system. The expected power-law at large
distances in the random-bond disordered case (~ %P2 with
Ckpz = 2/3) is indicated in a brown dotted line at the top.

random-manifold regime.

We consider a 1D interface parametrized at time ¢
by (y,u(y,t)) € [0, L] x R C R? as shown in Fig. 1 a).
The displacement field u(y, t) is univalued with periodic
boundary conditions u(y = 0,t) =u(y = L,t). Start-
ing from a flat initial condition u(y,t=0) =0 we let
the interface evolve according to the so-called quenched
Edwards-Wilkinson (qEW) equation [52-55] in the ab-
sence of an external force:

ndu(y, t) = coyuly,t) + F, (y,u(y, 1) + &y, ). (1)

Thermal fluctuations are described by a Gaussian
white noise £(y,t) of zero mean and two-point correla-
tor (€(y1,t1)E(y2,t2)) = 2nT6(y2 — y1)0(t2 — t1), where
(...) denotes the thermal average, 7 is an effective fric-
tion coefficient and T is the temperature (the Boltzmann
constant is fixed to kg = 1). We fix the units of time
and energy, respectively, by setting n = 1 and the elas-
tic constant ¢ = 1. The disorder is modeled through
a quenched random potential V,(y,u) and its associ-
ated pinning force Fj,(y,u) = —0,V,(y, u), both Gaus-

sian with zero mean and correlators:

Vo (y1,u1)Vp(y2,u2) = D Re(u2 — u1) 0(y2 — y1)
Fy(y1,u1)Fp(y2, u2) = Ag(ua —u1) 6(y2 — y1) ,

(2)

where - - - denotes the average over disorder realizations.
We consider the case of ‘random-bond’ disorder with fi-
nite correlation length &, i.e. with a short-range correla-
tor Re(u) = £ 'Ry (u/€) normalized as [ du Re(u) =1
and D the disorder strength. Both correlators are even
and related through Ag¢(u) = —D Rf(u) [21], so that
Jp duAe(u) = 0.

We numerically integrate (1) with the Euler method
and a time step At = 1072, keeping v as a continuous
variable while discretizing the y direction in L = 512
segments of unit length. This gEW settings allow us to
advantageously replace the Dirac §(y — y’) by the Kro-
necker dy,/ in (2) and thus to implement an uncorrelated
disorder along the internal direction y. In the trans-
verse direction, the disorder potential is dynamically
generated [55, 56] with random numbers taken from a
uniform distribution in the range [—$, §] at equidistant
positions, spaced by Au = 1. To obtain the random-
bond pinning force at a particular point u we interpolate
the two nearest random numbers with a linear spline
and take its derivative with respect to u. With these
settings the correlator Ag(u = ug — uq) is given by a
piecewise function, see Supporting Material (SM). Our
effective parameters are then {¢ = 1,D = %}, where
we took e = 0.1, and we explore T € {0.005,...,0.074}
(see SM).

To characterize the geometrical fluctuations of the in-
terface, we focus on the roughness function

B(r=ly2 —yil,t) = ([ulyz,t) —u(y,1)]?).  (3)

It quantifies the variance of the relative displacements of
the interface, as a function of the lengthscale r, and in-
herits the translation invariance in y of the microscopic
disorder. For a clean system (Fj,(y) = 0), we can com-
pute analytically the full time dependence of this corre-
lation for an infinite interface [52, 57]:

Tr 1 2,2 2 zr 2
Ba(rit) = — |1 (—“—1)—— dtet
(r?) c{ T ¢ VT Jo ¢

where z = /gL. At large times, (4) converges to the
static thermal roughness By, (r) = % To disentangle
the different contributions on the roughness function we
introduce the excess roughness Bgis = B — Biy, defined
as the difference between the total roughness and its
analytical prediction in the clean case.

In Fig. 1, we show the time evolution of the rough-
ness at a fixed temperature 7' = 0.01, averaged over
several realizations, in either clean or disordered sys-
tems (with the same numerical seed for the thermal
noise). For the clean case, the roughness is very well
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Figure 2. a) Roughness of interfaces evolving in a spatially-
correlated disorder, for temperatures T ranging from 0.005
to 0.07. Each curve corresponds to an average over 50 real-
izations with increased statistics (see text) that evolved with
the qEW dynamics (1) for a time ¢ = 10° starting from a
flat initial condition. Dashed lines indicate the analytical
prediction for the roughness in the absence of disorder given
by (4) at same ¢t = 10°. b) Corresponding excess rough-
ness Bais due to disorder, obtained as the difference between
the total roughness and the analytical prediction (4) of the
thermal roughness. The roughness decrease beyond r = L/2
is an artifact of the periodic boundary conditions. Our nu-
merical study shows unambiguously the existence of a key
power-law regime for the excess roughness existing at small
scales and characterized by an exponent (qis different from
the thermal and random manifold ones.

described by the analytical prediction (4). For the dis-
ordered case, at very large times and large lengthscales,
the power-law ~ r2kPZ with (kpz = %, characteristic
of a random-bond disorder, is reached. Note, however,
that already after t = 103 the roughness has converged
at short lengthscales (r < 20).

In Fig. 2 a) we show the total roughness function
B(r,T) at fixed large time ¢t = 10° averaged over 50
realizations. To increase the statistics, for each realiza-
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Figure 3. Collapse of the excess roughness Bais(a,T) for

different fixed lengthscales a as a function of temperature.
The collapse is obtained with a power-law a?¢ds, with (ais =

0.91 £ 0.01. The insert shows that if we force the use of

*h — 1 the collapse is lost — showing the sensitivity of our

method to determine the exponent.

tion that evolved for a time 10° we included 100 more
configurations equally spaced in time intervals of 103.
Note that this procedure allows us to considerably in-
crease the statistics for lengthscales at which the inter-
face has already equilibrated. In Fig. 2 b), we report
the corresponding excess roughness Byis(r,T') at differ-
ent temperatures. The numerical data shows clearly the
existence of a power-law regime of the roughness char-
acterized by an exponent (gis. This regime, which can
be obscured by the existence of the large thermal com-
ponent of the roughness depending on parameters, is
nevertheless present and universal, and results from the
interplay between the finite correlation of the disorder
and the thermal fluctuations. As we will discuss below,
besides the existence of the regime itself, the precise
value of the exponent (4;s has important consequences
for the temperature dependence of the roughness.

A fitting of Bgjs(r) with a power law ~ r2¢dis in the
regime of small values of r gives an exponent (g;s = 0.91
with a temperature-dependent amplitude but given the
importance of estimating whether (gi;s = 1 or not, we
explore below this issue in more details.

This result is further detailed in Fig. 3 where the
rescaling of Bgjs with this power-law 2% is shown.
The collapse of the curves is very sensitive to the
precise value of the exponent and allows us to rule
out with a high confidence a value of (qis =1 (see
SM). Interestingly, the only currently available analyti-
cal predictions give a theoretical value (4i5 = Cg}fs =1:
a finite-temperature perturbative approach [32] [58]
and two different computations of B(r) based on a



Gaussian-Variational-Method (GVM) scheme [29] [59].
Our numerical findings thus provide evidence that non-
perturbative approaches are required to determine the
exponent (4is, and beyond the usual variational alterna-
tives. Also, we checked that a different disorder distribu-
tion leads to the same value of (q;s (see SM), supporting
the robustness of (gis < 1.

To analyze the implications of this result, we
now determine the relevant lengthscales, first recall-
ing previously known results.  The static rough-
ness B(r) = Bin(r) + Bais(r) crosses over from a
thermal regime B(r)~ By (r) = Tr*®/c at very
short lengthscales, to the random-manifold regime
B(r) = Bais(r) ~ &% (r/L.)?*%?2 at lengthscales larger
than a characteristic length L., closely related to the
so-called ‘Larkin length’ in higher-dimensional inter-

1

faces [19, 60]. In our system, ¢y = 3 and (kpz = 3.

Previous analytical studies [29, 30, 44] have shown

that L. = (Tcg;)s and &g = %, with a temperature-
dependent parameter f. Defining the energy scale
T, = (£eD)'/3, we expect a monotonous crossover from
frlatT>»T.to f~T/T. at T < T [61]. The ef-
fective characteristic energy scale E= T/f then con-
trols all the relevant scales for the geometrical fluctua-
tions and in the two previous limits, it is fixed either by
thermal fluctuations (F = T') or by disorder (E = T,).
From our numerical findings Bgis(r) has two power-law
regimes with a single crossover lengthscale r¢:

Aq(r/rg)%Sais
Buyis(r) = { AQETZE;MS .

We can now fix rp with a scaling argument simi-
lar to the one used in [44] to determine {L.,&cs}-
We rescale the spatial coordinates (y = by, u = ai)
and parameters {c=¢,D = DyD' T = ET' ¢ = a&'}
while leaving the Boltzmann weight invariant, so
that B(r;c,D,T,¢) = a?B(r/b;c, D', T',¢"). To fo-
cus on the microscopic interplay of temperature
and disorder, we fix the scales a =¢ and E=T/f

3
(i.e. {¢'=1,T7" = f}) which implies Dy = Lég) and

b= ;5/2]0 The short-lengthscale regime where both
the disorder correlation length and the effective energy
scale E are equally relevant lies at r < b, so that we
can identify rg = 0. Note that the effective disorder
strength D' = %f crosses over from D' ~ 1 at T < T,
to D' ~T./T at T > T,: the latter case supports a
small-disorder perturbative expansion at high temper-
ature, as physically expected.

We can thus make explicit the prefactors for
Bdis(r S 7”0) in (5) Al = Bdis(’r‘o) = AQ with AQ fixed
from the large scales from A/ rg/ 3= &2/ Y3, Using

rrg,
r>Trg.

(5)

ro = ;g/?, we finally get

Bais(r <7
Agis(T) = =1 ( o)

2T2 2(1—Cais)
e C G

72Cais x (052)2@115 T

This relation entails an important property: a value
Cais = (fﬁ‘s =1 would yield a temperature-independent
roughness prefactor. On the contrary, a value (gis # 1,
as we find numerically, implies that the prefactor
Aqis(T) does depend on temperature. This is what we
report in Fig. 3, thus further supporting the scenario
Cais < 1.

From the behavior of the interpolating parameter
f~1at T>»T. and f~T/T, at T < T., Eq. (6)
would imply that Agis(T) decreases with increasing T'
at T > T, and saturates at T"— 0. This scenario is at
variance with our numerical findings in Fig. 3: as indi-
cated by the dashed line, Aqis(T") does indeed present
a regime of temperature ~ T ~2(1=Cais) compatible with
(6). However, such power-law behavior is expected to
hold at high T and to provide an upper bound to the
low-T' saturation. The reasons for this discrepancy are
unclear at the moment but could stem from: (i) nu-
merical prefactors in the estimation of T.(£), so that
the regime 7' < T, would in fact be reached below our
temperature range; (i) the discretization along the in-
ternal direction gy, which could add one lengthscale to
take into account in the scaling analysis. A breakdown
of the above scaling argument is not to be excluded, but
ro = c€2f /T does coincide with a more involved predic-
tion obtained in the KPZ language [62]. This discrep-
ancy, which does not question our main result namely
the existence of the novel power-law roughness regime,
clearly requires further investigations that are beyond
the scope of the present paper.

Let us now turn to the case of very small thermal fluc-
tuations T — 0T, where the crossover between the ther-
mal and (4;s power-law regimes can be further examined,
both analytically and numerically. We first emphasize
that the crossover lengthscale 7y is always bounded by
the ‘Larkin length’ L.:

ot 10 Sy e ()

T<<TC: TOSLCNCDC?:W

{T>>TC; ro < Lo, withrg ~ %, Lo~ 2

At high temperature, the regime r <ry where
Byis(r) ~ r2¢ais has a small extension and is screened
by the thermal contribution Tr/c in B(r); hence, as r
increases, the total roughness B(r) crosses over directly
from the thermal to the random-manifold regime, with
a single crossover at the high-T Larkin length L. such
that Byp(Le) & Bais(Lc). On the contrary, in the limit
T — 0" we have B(t) ~ Bqis(r), which crosses over from
the new power-law regime that we characterized ((qis)
to the well-studied random-manifold regime ({kpz), and
a vanishing thermal regime at r < rq ~ T'1/[1=2(1=Cais)]
[63]. By studying the lengthscale 1 (see SM), we find
our numerical results to be compatible with a scaling
Cais ~ 0.91, but not with (gis = ¢{ = 1.

Physically the characteristic lengthscales {L.,rq,71}
and the energy scale E= T/f are related to the mi-
croscopic interplay between temperature and disorder,



from which they stem from. The ‘Larkin length’ can
be deduced from asymptotically large lengthscales, eas-
ier to access both analytically and experimentally, hence
its crucial role in previous studies [19, 21, 29, 30, 44, 60].
In this paper, we argue instead that it stems as a con-
sequence of short-lengthscale properties, usually hidden
below experimental resolution, that one can nevertheless
investigate via the excess roughness due to disorder.

The relevance of these results extends well beyond
the sole static 1D interfaces, thanks to the exact map-
ping onto the 141 directed polymer (DP) and the KPZ
settings [33, 64]. An interface segment can be seen as
a polymer having grown along a DP ‘time’ (our inter-
nal direction y). Fixing an extremity of the DP at
the origin, we can focus on its endpoint distribution
which encodes, at a fixed ‘time’ r, the geometrical fluc-
tuations of an equilibrated interface at a lengthscale r.
The DP free-energy, i.e. the logarithm of this distribu-
tion, then obeys a KPZ equation with a ‘time’ r and
a spatially-correlated noise V, (our random potential),
with a so-called ‘sharp-wedge’ initial condition [64]. Tts
steady-state properties have been studied through non-
perturbative functional-renormalization-group [45], but
the understanding of the short-DP-‘time’ regime is in-
complete, either through variational or perturbative ap-
proaches [29, 30, 32, 43]. The scope of our results can
thus be extended as follows. Considering the free-energy
two-point correlator, the scale rg corresponds to the DP
‘time’ at which the maximum of this correlator satu-
rates to its steady-state value [30]; the short-lengthscale
power-law regime of Bgis(r) governed by (g5 that we
uncovered describes how the DP free-energy (i.e. the
KPZ field) distribution evolves at short times. This in-
dicates that, to access the KPZ universality at short
times, one needs to disentangle the disorder from the
thermal fluctuations, and that this seems be done in a
scale-invariant regime governed by (gis. Finally, since
the Burgers equation is derived from the KPZ one, our
results translate to the Burgers turbulence [51] where
the small-temperature asymptotics corresponds to the
inviscid limit and large-scale forcing [46, 50].

In this work, we have found numerical evidences that,
hidden under thermal fluctuations of a 1D interface,
there exists a scale-invariant regime at short length-
scales governed by an exponent (4. Our numerical
analysis allows in addition to show that (4;s < 1 at vari-
ance with the existing analytical estimates for such an
exponent % = 1. The discrepancy hints towards the
non-perturbative nature of the short-lengthscale regime
of Byis(r), which thus requires further analytical inves-
tigations. In systems where thermal fluctuations are
strong enough, the scaling regime described by (gis is
hidden under the thermal fluctuations, but when the
temperature becomes small or when the disorder cor-
relation length becomes large, the power-law behaviour
B(r) ~ r?¢s can be manifest on an experimentally or

numerically accessible range. For instance, large rough-
ness exponents were found in a recent modelization [65]
of experimental measurements [66] of magnetic circu-
lar domains subjected to an AC field. A possible cause
can be that the AC field effectively increases the disor-
der correlation length in the sample, thus unveiling the
B(r) ~ r%ds regime. It is worth investigating the exis-
tence of such scaling regime in interfaces, and to test its
robustness to features such as overhangs (for instance
in disordered Ginzburg-Landau models [67], known to
reduce to gEW in some limit [57]). Adding a driving
force generates a small velocity in a non-linear so-called
‘creep regime’, whose scaling is controlled by the static
geometrical exponents. It is natural to wonder if the
scaling regime we unveiled has consequence for the creep
regime, for instance in avalanches statistics. The case
of higher dimensions random manifolds is also open.

Such situation would thus prove a natural direction
in which to try to observe this regime in the current
experimental implementations of domain walls, such as
the magnetic of ferroelectric ones. Such observations,
although challenging due to the difficulty to access the
small lengthscales would however also provide informa-
tions on the stability of this regime to the deviations
from the elastic theory.

We thank Jean-Pierre Eckmann and Sebastian
Bustingorry for discussions related to this work. This
work was supported in part by the Swiss National
Science Foundation under Division II. N.C. acknowl-
edges support from the Federal Commission for Schol-
arships for Foreign Students for the Swiss Govern-
ment Excellence Scholarship (ESKAS No. 2018.0636).
E.A. acknowledges support from the Swiss National
Science Foundation by the SNSF Ambizione Grant
PZ00P2_173962. V.L. thanks the Université de Geneve
(where part of this work was performed) for its warm
hospitality, and acknowledges support by the ERC
Starting Grant No. 680275 MALIG, the ANR-18-CE30-
0028-01 Grant LABS and the ANR-15-CE40-0020-03
Grant LSD.

The simulations were performed at the University of
Geneva on the Mafalda cluster of GPUs.

* Corresponding author: Nirvana.CaballeroQunige.ch

[1] D. S. Fisher, Phys. Rep. 301, 113 (1998).

[2] S. Lemerle, J. Ferré, C. Chappert, V. Mathet, T. Gi-
amarchi, and P. Le Doussal, Phys. Rev. Lett. 80, 849
(1998).

[3] J. Ferré, P. J. Metaxas, A. Mougin, J.-P. Jamet, J. Gor-
chon, and V. Jeudy, Comptes Rendus Physique 14, 651
(2013).

[4] P. Paruch and J. Guyonnet, Comptes Rendus Physique
14, 667 (2013).

[5] G. Durin, F. Bohn, M. A. Corréa, R. L. Sommer,
P. Le Doussal, and K. J. Wiese, Phys. Rev. Lett. 117,


mailto:Nirvana.Caballero@unige.ch
https://doi.org/DOI: 10.1016/S0370-1573(98)00008-8
https://doi.org/10.1103/PhysRevLett.80.849
https://doi.org/10.1103/PhysRevLett.80.849
https://doi.org/10.1016/j.crhy.2013.08.001
https://doi.org/10.1016/j.crhy.2013.08.001
https://doi.org/http://dx.doi.org/10.1016/j.crhy.2013.08.004
https://doi.org/http://dx.doi.org/10.1016/j.crhy.2013.08.004
https://doi.org/10.1103/PhysRevLett.117.087201

087201 (2016).

[6] N. B. Caballero, I. F. Aguirre, L. J. Albornoz, A. B.
Kolton, J. C. Rojas-Sanchez, S. Collin, J. M. George,
R. D. Pardo, V. Jeudy, S. Bustingorry, and J. Curiale,
Phys. Rev. B 96, 224422 (2017).

[7] R. Diaz Pardo, W. Savero Torres, A. B. Kolton,
S. Bustingorry, and V. Jeudy, Phys. Rev. B 95, 184434
(2017).

[8] E. K. H. Salje, D. Xue, X. Ding, K. A. Dahmen, and
J. F. Scott, Phys. Rev. Materials 3, 014415 (2019).

[9] P. Tiickmantel, I. Gaponenko, N. Caballero, J. C. Agar,
L. W. Martin, T. Giamarchi, and P. Paruch, Phys. Rev.
Lett. 126, 117601 (2021).

[10] M. Alava, M. Dube, and M. Rost, Advances in Physics
53, 83 (2004).

[11] S. Santucci, K. J. Malgy, A. Delaplace, J. Math-
iesen, A. Hansen, J. . Haavig Bakke, J. Schmittbuhl,
L. Vanel, and P. Ray, Phys. Rev. E 75, 016104 (2007).

[12] L. Laurson, X. Illa, S. Santucci, K. T. Tallakstad, K. J.
Malgy, and M. J. Alava, Nature Communications 4, 1
(2013).

[13] S. Santucci, K. T. Tallakstad, L. Angheluta, L. Laurson,
R. Toussaint, and K. J. Malgy, Philosophical Transac-
tions of the Royal Society A 377, 20170394 (2019).

[14] O. Chepizhko, C. Giampietro, E. Mastrapasqua,
M. Nourazar, M. Ascagni, M. Sugni, U. Fascio, L. Leg-
gio, C. Malinverno, G. Scita, S. Santucci, M. J. Alava,
S. Zapperi, and C. A. M. La Porta, Proceedings of the
National Academy of Sciences 113, 11408 (2016).

[15] R. Alert and X. Trepat, Annual Review of Condensed
Matter Physics 11, 77 (2020).

[16] G. Rapin*, N. Caballero*, I. Gaponenko, B. Ziegler,
A. Rawleight, E. Moriggi, T. Giamarchi, S. A. Brown,
and P. Paruch, Scientific Reports 11, 1 (2021).

[17] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587
(2011).

[18] D. S. Fisher, Phys. Rev. B 31, 1396 (1985).

[19] G. Blatter, M. V. Feigel’'man, V. B. Geshkenbein, A. L.
Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125
(1994).

[20] P. Chauve, T. Giamarchi, and P. Le Doussal, Europhys.
Lett. 44, 110 (1998).

[21] P. Chauve, T. Giamarchi, and P. Le Doussal, Phys. Rev.
B 62, 6241 (2000).

[22] E. Agoritsas, V. Lecomte, and T. Giamarchi, Physica B
407, 1725 (2012).

[23] K. J. Wiese, Theory and experiments for disordered
elastic manifolds, depinning, avalanches, and sandpiles,
arXiv:2102.01215 [cond-mat.dis-nn] (2021).

[24] E. E. Ferrero, L. Foini, T. Giamarchi, A. B. Kolton, and
A. Rosso, Annual Review of Condensed Matter Physics
12, 111 (2021).

[25] A.-L. Barabasi and H. E. Stanley, Fractal Concepts in
Surface Growth, Cambridge University Press ed. (Cam-
bridge, 1995).

[26] D. Jordan, L. J. Albornoz, J. Gorchon, C. H. Lambert,
S. Salahuddin, J. Bokor, J. Curiale, and S. Bustingorry,
Phys. Rev. B 101, 184431 (2020).

[27] M. J. Cortés Burgos, P. C. Guruciaga, D. Jordén, C. P.
Quinteros, E. Agoritsas, J. Curiale, M. Granada, and
S. Bustingorry, Phys. Rev. B 104, 144202 (2021).

[28] G. Rapin, S. Ehrensperger, C. Blaser, N. Caballero, and
P. Paruch, Applied Physics Letters In press (2021).

[29] E. Agoritsas, V. Lecomte, and T. Giamarchi, Phys. Rev.

B 82, 184207 (2010).

[30] E. Agoritsas, V. Lecomte, and T. Giamarchi, Phys. Rev.
E 87, 042406 (2013).

[31] E. Agoritsas, V. Lecomte, and T. Giamarchi, Phys. Rev.
E 87, 062405 (2013).

[32] S. E. Korshunov, V. B. Geshkenbein, and G. Blatter,
Journal of Experimental and Theoretical Physics 117,
570 (2013).

[33] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.
56, 889 (1986).

[34] D. A. Huse, C. L. Henley, and D. S. Fisher, Phys. Rev.
Lett. 55, 2924 (1985).

[35] I. Corwin, Random Matrices: Theory and Applications
01, 1130001 (2012).

[36] P. Calabrese and P. Le Doussal, Phys. Rev. Lett. 106,
250603 (2011).

[37] P. L. Doussal and P. Calabrese, J. Stat. Mech. 2012,
P06001 (2012).

[38] T. Halpin-Healy and K. A. Takeuchi, Journal of Statis-
tical Physics 160, 794 (2015).

[39] J. Quastel and H. Spohn, Journal of Statistical Physics
160, 965 (2015).

[40] J. P. Bouchaud, M. Mézard, and G. Parisi, Phys. Rev.
E 52, 3656 (1995).

[41] S. E. Korshunov and V. S. Dotsenko, J. Phys. A: Math.
Gen. 31, 2501 (1998).

[42] E. Agoritsas, S. Bustingorry, V. Lecomte, G. Schehr,
and T. Giamarchi, Phys. Rev. E 86, 031144 (2012).

[43] V. Dotsenko, J. Stat. Mech.: Th. Exp. 2016, 123304
(2016).

[44] E. Agoritsas and V. Lecomte, J. Phys. A: Math. Theor.
50, 104001 (2017).

[45] S. Mathey, E. Agoritsas, T. Kloss, V. Lecomte, and
L. Canet, Phys. Rev. E 95, 032117 (2017).

[46] V. Dotsenko, J. Stat. Mech.: Th. Exp. 2018, 083302
(2018).

[47] K. A. Takeuchi, M. Sano, T. Sasamoto, and H. Spohn,
Scientific Reports 1, 34 (2011).

[48] K. A. Takeuchi and M. Sano, Journal of Statistical
Physics 147, 853 (2012).

[49] K. A. Takeuchi, Physica A 504, 77 (2018).

[50] T. Gotoh and R. H. Kraichnan, Physics of Fluids 10,
2859 (1998).

[51] J. Bec and K. Khanin, Physics Reports 447, 1 (2007).

[52] S. F. Edwards and D. R. Wilkinson, Proceedings of the
Royal Society A 381, 17 (1982).

[53] A. B. Kolton, A. Rosso, and T. Giamarchi, Phys. Rev.
Lett. 94, 047002 (2005).

[64] E. E. Ferrero, S. Bustingorry, A. B. Kolton, and
A. Rosso, Comptes Rendus Physique 14, 641 (2013).

[55] E. E. Ferrero, S. Bustingorry, and A. B. Kolton, Phys.
Rev. E 87, 032122 (2013).

[56] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E.
Shaw, in Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage
and Analysis (2011) pp. 1-12.

[67] N. Caballero, E. Agoritsas, V. Lecomte, and T. Gia-
marchi, Phys. Rev. B 102, 104204 (2020).

[58] See Eq. (20) in [32] for the second-order correction at
finite temperature, leading to the conjecture stated in
Eq. (21).

[59] See Egs. (56), (126) in [29].

[60] A. I Larkin, Sov. Phys. JETP 31, 784 (1970).

[61] See Egs. (49), (97) in [30].


https://doi.org/10.1103/PhysRevLett.117.087201
https://doi.org/10.1103/PhysRevB.96.224422
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.184434
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.184434
https://doi.org/10.1103/PhysRevMaterials.3.014415
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.117601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.117601
https://doi.org/10.1080/00018730410001687363
https://doi.org/10.1080/00018730410001687363
http://link.aps.org/doi/10.1103/PhysRevE.75.016104
https://www.nature.com/articles/ncomms3927
https://www.nature.com/articles/ncomms3927
https://royalsocietypublishing.org/doi/10.1098/rsta.2017.0394
https://royalsocietypublishing.org/doi/10.1098/rsta.2017.0394
https://www.pnas.org/content/113/41/11408
https://www.pnas.org/content/113/41/11408
https://doi.org/10.1146/annurev-conmatphys-031218-013516
https://doi.org/10.1146/annurev-conmatphys-031218-013516
https://doi.org/10.1038/s41598-021-86684-3
http://link.aps.org/doi/10.1103/RevModPhys.83.587
http://link.aps.org/doi/10.1103/RevModPhys.83.587
https://doi.org/10.1103/PhysRevB.31.1396
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.66.1125
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.66.1125
https://doi.org/10.1209/epl/i1998-00443-7
https://doi.org/10.1209/epl/i1998-00443-7
https://doi.org/10.1103/PhysRevB.62.6241
https://doi.org/10.1103/PhysRevB.62.6241
https://doi.org/10.1016/j.physb.2012.01.017
https://doi.org/10.1016/j.physb.2012.01.017
https://arxiv.org/abs/2102.01215
https://arxiv.org/abs/2102.01215
https://www.annualreviews.org/doi/full/10.1146/annurev-conmatphys-031119-050725
https://www.annualreviews.org/doi/full/10.1146/annurev-conmatphys-031119-050725
https://doi.org/https://doi.org/10.1103/PhysRevB.101.184431
https://link.aps.org/doi/10.1103/PhysRevB.104.144202
https://doi.org/10.1103/PhysRevB.82.184207
https://doi.org/10.1103/PhysRevB.82.184207
https://doi.org/10.1103/PhysRevE.87.042406
https://doi.org/10.1103/PhysRevE.87.042406
https://doi.org/10.1103/PhysRevE.87.062405
https://doi.org/10.1103/PhysRevE.87.062405
https://doi.org/10.1134/S1063776113110022
https://doi.org/10.1134/S1063776113110022
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.55.2924
https://doi.org/10.1103/PhysRevLett.55.2924
https://doi.org/10.1142/S2010326311300014
https://doi.org/10.1142/S2010326311300014
https://doi.org/10.1103/PhysRevLett.106.250603
https://doi.org/10.1103/PhysRevLett.106.250603
https://doi.org/10.1088/1742-5468/2012/06/P06001
https://doi.org/10.1088/1742-5468/2012/06/P06001
https://doi.org/10.1007/s10955-015-1282-1
https://doi.org/10.1007/s10955-015-1282-1
https://doi.org/10.1007/s10955-015-1250-9
https://doi.org/10.1007/s10955-015-1250-9
https://doi.org/10.1103/PhysRevE.52.3656
https://doi.org/10.1103/PhysRevE.52.3656
https://doi.org/10.1088/0305-4470/31/11/009
https://doi.org/10.1088/0305-4470/31/11/009
https://doi.org/10.1103/PhysRevE.86.031144
https://doi.org/10.1088/1742-5468/aa4e5e
https://doi.org/10.1088/1742-5468/aa4e5e
https://doi.org/10.1088/1751-8121/aa5753
https://doi.org/10.1088/1751-8121/aa5753
https://doi.org/10.1103/PhysRevE.95.032117
https://doi.org/10.1088%2F1742-5468%2Faad6c8
https://doi.org/10.1088%2F1742-5468%2Faad6c8
https://doi.org/10.1038/srep00034
https://doi.org/10.1007/s10955-012-0503-0
https://doi.org/10.1007/s10955-012-0503-0
http://www.sciencedirect.com/science/article/pii/S0378437118303170
https://doi.org/10.1063/1.869807
https://doi.org/10.1063/1.869807
https://doi.org/10.1016/j.physrep.2007.04.002
https://doi.org/10.1098/rspa.1982.0056
https://doi.org/10.1098/rspa.1982.0056
https://doi.org/10.1103/PhysRevLett.94.047002
https://doi.org/10.1103/PhysRevLett.94.047002
https://doi.org/http://dx.doi.org/10.1016/j.crhy.2013.08.002
https://doi.org/10.1103/PhysRevE.87.032122
https://doi.org/10.1103/PhysRevE.87.032122
https://doi.org/10.1103/PhysRevB.102.104204

[62] See Eq. (99) in [30], where the DP ‘time’ ¢sa¢ identifies
with To.

[63] At low T, B(r) intersects Bais(r) at a
crossover 11 <79. We can evaluate 7 at
T < T. from Trijc= Ai(ri/ro)*ds, which yields

1-2(1—Cqis T(T/)*3 2(1—Cais) ...t
r (1=¢a ):cg(él/é%%( Cais) with T/f ~T..

[64] D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54, 2708
(1985).

[65] N. Caballero, J. Stat. Mech. 2021, 103207 (2021).

[66] P. Domenichini, C. P. Quinteros, M. Granada, S. Collin,
J.-M. George, J. Curiale, S. Bustingorry, M. G. Cape-
luto, and G. Pasquini, Phys. Rev. B 99, 214401 (2019).

[67] N. B. Caballero, E. E. Ferrero, A. B. Kolton, J. Curiale,
V. Jeudy, and S. Bustingorry, Phys. Rev. E 97, 062122
(2018).


https://doi.org/10.1103/PhysRevLett.54.2708
https://doi.org/10.1103/PhysRevLett.54.2708
https://doi.org/10.1088/1742-5468/ac2898
https://doi.org/10.1103/PhysRevB.99.214401
https://doi.org/10.1103/PhysRevE.97.062122
https://doi.org/10.1103/PhysRevE.97.062122

Supporting material for
“Microscopic interplay of temperature and disorder of a 1D elastic interface”

Pinning force correlator and disorder strength

In this section, we detail how we generate the
quenched random potential V,(y,u) and its associated
pinning force F,(y,u) = —0,V,(y,u). We recall that
the interface is parametrized by the univalued displace-
ment field u(y,t), with the internal coordinate y tak-
ing discrete values y = jAy (where j is an integer,
j=0,...L,/Ay), and the transverse coordinate u tak-
ing continuous values. We consider a disorder with
Gaussian distribution fully characterized by a zero mean
and the two-point correlators:

‘/P(yhul)vp(yQaUQ) = DR&(UQ - Ul) 5y2y1 ;

(8)
Fp(y1,u1) Fp(y2, uz) = Ag(uz — u1) 8y,

where --- denotes the average over disorder realiza-
tions. We chose the normalization [, du Re¢(u) = 1, and
the correlators are simply related by A (u) = fDR'E’ (u).
In the following, we thus make explicit the functional
A¢(u) and the disorder strength D.
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Figure 4. For a fixed coordinate y, the random po-

tential Vp(y,u) is generated by a linear interpolation be-
tween random numbers taken from a uniform distribution
with zero mean (orange crosses). The associated pinning
force F}, is obtained from the associated piecewise derivative
Fyp(y,u) = —0uVp(y, u).

Generating a spatially-correlated disorder

The pinning potential V,(y,u) is defined indepen-
dently for each discrete value of the coordinate y, so that
in what follows, one fixes y and considers only the coor-

dinate u. The procedure to generate the correspond-
ing quenched ‘landscape’ U(u) = V,(y,u) at fixed y,
spatially-correlated with a finite correlation length &, is
the following (see Fig. 4). We first discretize the direc-
tion u with fixed steps Au = &£. A random number Uy
is generated independently at each site u = kAu (with
k an integer) from a probability distribution function
P(Uy) of zero mean.

Then, on every interval u € [kAu, (k + 1)Au] (i.e. one
has k = |u/Au]) the random pinning potential is de-
fined as a linear interpolation between Uy and Uj41:

Uky1 — U
Au

One can easily check that, as required, this defini-
tion satisfies U(kAu) = Uy and U((k + 1)Au) = Ugy1.
The associated pinning force Fj,(u) = —0, U (u) is finally
given by the discrete derivative

Uu) = Uy + (u— kAu). (9)

_ Ug1 — Uy

Fp(u) = Au

(10)

with k = |u/Au]| as above.

For our simulations we sort each reference value Uy

from a uniform distribution on the interval [—$, ], with

€ > 0. It has consequently a zero mean and a variance

D() = (Uk)Q = j . (11)

To keep the discussion general, thereafter we generically
denote the variance of Uy, as a control parameter Dy. In
addition, we discuss in Sec. how choosing an alterna-
tive distribution P(Uy) (non-uniform but with the same
variance) leads to physically consistent results.

Piecewise linear force correlator

We start by defining the intermediate two-point cor-
relator of the force as

AP (u, up) = Fy(wr) Fy(ua) (12)

Because it is associated to the specific set of intervals
u € [kAu, (k 4+ 1)Au] with k = |u/Au], it is important
to notice that it is not invariant by translation along the
w direction. Indeed, pairs of points (u1, us2) separated by
a same distance u = us — uy can either lie in the same
interval [kAu, (k 4+ 1)Au] or not.

One has in fact three possibilities: if (u1,uz) are

e in the same interval, one has

2Dy

RN CE

AP (u1,up) = 2(0;)?



e in adjacent intervals
[kAu, (k+ 1)Au]:

[(k — 1)Au,kAu] and

Dy

(2) — — .
A (uruz) = —(Ui)? = — 55

(14)

e in more distant intervals [kAw, (k + 1)Au] and
[1Au, (j + 1)Au] with |k — j| < 2:

AéQ)(ul,UQ) =0. (15)

And from now on we use that £ = Au to emphasize the
explicit dependence on the correlation length &.

To recover a translation-invariant correlator, as re-
quired in the definitions (8), one must average the in-
termediate correlator Aéz) (u1,usg) over all pairs of points
(u1,ug) separated by the same distance u:

Ag(’u,) = dU1dU,2 (5(1,62 — Uy — u) A?) (ul, 'U;Q) . (16)

One finds by an explicit computation
= ET
with A,gim (@) the piecewise linear continuous function
that connects the values:

Ag(u) Ajdim (u/€) (17)

Angim(2) =2 for 4=0, (18)
Apaim (@) = =1 for |a|=1, (19)
Aadim(a) =0 for |ﬁ| Z 2. (20)

The complete function is plotted in the inset of Fig. 5.

As a self-consistent validation of our procedure, we
evaluated numerically the correlator Ag(u), and as
shown in Fig. 5 we find an excellent agreement with
the expression (17).

Correlators in Fourier space and disorder strength

One can check that fR dd Angim (4) = 0, as expected
for the ‘random-bond’ disorder we consider. To access
the disorder strength D, we switch to Fourier space
where we can more easily exploit the relation between
the correlators A¢(u) = —DR{ (u) from Eq. (8).

We first rewrite, similarly to Eq. (17), the random po-
tential correlator in terms of its adimensionalized ver-
sion, starting from its very definition

———— D

U(u)U(0) = DRe(u) = zRadim(u/f) . (21)
First, by direct comparison with the definition in
Eq. (11) we can establish its relation to the variance
Dol

— D

DO = U(O)2 = DR&(U = 0) = ?Radim(ﬁ = 0) s (22)

2
\ —
0.154 '\ £ 1+
R E
\ £
ERNEUE B 5 0

s U \ 4
2 \

& i \ -1 T T T
= 005 \ 25 0.0 25
2 N i
2 0.00 \ om———-

u ”

5 \\\ /’,,
—0.05 1 \\ ’,’ average
2 —- Agw)
—0.10 1
T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5
u
Figure 5. Numerical evaluation of the pinning force cor-

relator for 100 different disorder realizations with ¢ = 1
(gray lines) and its average (pink). In black dashed line we
show A¢(u), the expected correlator given by Eq. (17) with
Do = 1/12. In the inset, we show the adimensionalized force
correlator Aaqim () connecting the values of Egs. (18)-(20).

and secondly the relation between the correlators
A¢(u) = —DR{(u) becomes

Dy N D .

72 Dadim(8) = — 75 i (1) - (23)

Defining the Fourier transform along the transverse
direction as Audim (§) = [5 At "7 Aygim (1), one finds by
direct computation that it takes the simple form:

L [sin 4]
Aadim() = 16672 . (24)
I}eﬁning similarly the Fourier transform
Radim(§) = [ dti €' 1" Rogim (4), Eq. (23) rewrites
~ D N
Aa im ) = 7A2Ra im ]) - 25
dim (q) Dyed Ttaaim (@) (25)

At this point, we might think that we have some free-
dom to define Ruqim up to an arbitrary constant, but
we have in fact to enforce the imposed normalization
Jp du Ragim (@) = 1 or equivalently Radim (G =0) = 1.
This is achieved by imposing DLOg =1 and thus

: g 4
Radim(d) = 16[51242}

Furthermore, we have by inverse Fourier transform:

= lim Raqim(4) = 1. (26)
G—0

. dq - o2
adim = - 5 {tadim - 5 2
Rum(i=0) = [ B Ram@) = 3. (21)

We have, at last, directly access to the disorder strength:

(22) Do€ @0 3

D - >
Radim (4 = 0) 2

Dot . (28)



The last expression is valid for any random poten-
tial generated by a linear interpolation between uncor-
related random points, drawn from an arbitrary distri-
bution P(Uy) with zero mean and variance Dy. For the
uniform distribution we consider, Eq. (11) implies

; 3 1
Dunlform — 2 DnE = = 2 ) )
5 Dot = ge (29)

Parameters of numerical simulations

To solve the quenched Edwards-Wilkinson equation
(Eq. (1) of the main text) and compute the interface
roughness, we take advantage of massively parallel ac-
celerated computing with a CUDA C++ code running
in NVIDIA GPUs with a Volta architecture, in double
precision. At each simulation step we approximate the
second derivative of u along the y-direction by a two-
point central finite difference scheme and integrate in
time with a first-order Euler step. Pseudo-random num-
bers are generated with a counter-based RNG (Philox,
allowing 294 parallel and distinct streams with a period
of 2128 [56]). For the thermal noise, we use Gaussian
distributed numbers while for the quenched disorder, we
use the method described in Sec. (and in Sec. in the
consistency check described in the same section): the
method consists in a linear interpolation of uniformly
distributed random numbers with the implementation
proposed in [55]. These random numbers, uncorrelated
from site to site, are dynamically generated along the
evolution of the interface, i.e. we build the disorder at
larger u only if the interface has locally wandered fur-
ther away.

Space discretization along the y-direction is set to 1
and time discretization to 1072. We can simulate 4 re-
alizations of systems of 512 sites for 10® steps in ap-
proximately 8 hours. These scheme and parameters
give roughness functions in the clean case which are
in very good agreement with the theoretical prediction
(Eq. (4) in the main text). The corresponding roughness
of the simulated systems differs from the theoretically
predicted values in less than 10~* for r < 50 and less
than 1073 for larger values of r (both, simulated and
predicted roughness functions are shown in Fig. 1 in the
main text). This excellent agreement is a strong consis-
tency check that provides a good support for the validity
of the numerical procedure in the disordered case.

Disorder generated from a Gaussian distribution

For the temperature T' = 0.01, we determined the ex-
cess roughness B§2"(r) for a disorder potential where
the U;’s are distributed with a Gaussian distribution
with the same variance (U;)? = 1/12 as the uniform
one, see Eq. (11). On Fig. 6, B§2"(r) is compared to

10

10! 1 = Uniform
Gaussian
10° 3
Q 3 0 l
< K
S ]
10724 .
] 10"
T T T L) T T L
10° 10! 102

Figure 6. Roughness (dotted lines) and excess roughness
(continuous lines) at 7" = 0.01 averaged over 50 realizations
with increased statistics, obtained for disorders generated
from a uniform and a Gaussian distribution. In the inset we
show the difference between both excess roughness.

the excess roughness Bqis(r) computed —as in the rest
of the paper— for a disordered potential with the U,;’s
drawn from a uniform distribution, as described in sec-
tion .

The results show that B$2US(r) is very close to
Byis(r). This provides a strong evidence supporting
the following points: in the asymptotic regime r — 0,
the power-law behaviour Bgis(r) ~ r2¢ds is universal,
i.e. presents an exponent (q;s which does not depend
on the specific random-potential disorder distribution.
This is an important aspect, as the asymptotic regime
r — 0 where Bgis(r) presents the power-law behaviour
~ r26is could have been sensitive to the details of the
disorder correlator at small scales. Also, the prefactor A
in Bgis(r) ~ Ar2¢dis is mainly governed by the variance
Dy of the disorder distribution (which is the same in the
uniform and in the Gaussian distribution we have used
for P(u)). Last, we expect also that this prefactor A
depends, through a numerical constant, on the rescaled
shape A,qim (@) of the disorder correlator. This is seen
in the small difference |B$2"(r) — Bais(r)| < Bais(r)
shown in the inset of Fig. 6. Such difference also scales
as r2¢dis in the asymptotic regime r — 0, indicating that
indeed only the prefactor A is affected by the adimen-
sionalized shape of the disorder correlator.

Scaling of the crossover scale r1(T")

The crossover scale ry is determined numerically by
the intersection between the two power-law scalings
Buyis(r) ~ r%as and the thermal regime Tr/c. The scal-
ing arguments presented in the main text indicate that



r1 scales with temperature as

T1/1-201—Caio)]

for T T,
n(~{ 7

forT>T,. (30)

To determine how our numerical results are compatible
with such predictions, we have used a fitting function

ri(T) = CT [1+ (T/T*)*+ ] (31)

(where C and T™* are constants and a_ < ay) that
interpolates between the regimes riit(T) ~ 7%~ for T <
T* and ri(T) ~ T+ for T > T*. The prediction of
Eq. (30) corresponds to

ar =5, a_=1/1-2(1-Cu)]. (32

A first scenario where (4is = (il. = 1 (according to the

perturbative analysis of [32], for instance) corresponds
to a— = 1. A second scenario where (455 ~ 0.9 < 1
corresponds to a_ ~ 1.25 > 1. To distinguish between
these two possibilities, we have fitted the values of r1(T')
obtained numerically with the function (31), where we
fixed the exponent ai and we left the constants C' and
T* as free parameters. As shown on Fig. 7, the data pro-
vide a strong evidence supporting the second scenario
Cais =~ 0.9 < 1. Also, leaving ar_ as a free parameter
for the fit, one finds a— =~ 1.33 which corresponds to
the value (4is = 0.88: it is compatible with the value
Cais =~ 0.91 obtained in the main text with a completely
different method.
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Figure 7. Behaviour of the crossover scale r1(T"). The points
are the result of numerical simulations, while the dashed and
full line curves correspond to the two scenarios discussed in
the text. The exponent a— =~ 1.25 > 1 is more compatible
with the numerical data, and corresponds to (4is =~ 0.9 < 1.

Determination of the best value of (ais

To obtain (y;s from the numerical data presented in
the main text, we fit Bqgjs(r, T') independently for each
value of T in the range r = [1,7;]. For the nine low-
est temperatures we have studied, we find values of (g;s
between 0.9 and 0.92. To determine the best value of
this exponent that is compatible with every tempera-
ture we considered, we rely on the following scaling ar-
gument. We predict that Bgis(ro,T) /rgc‘“s should be
independent of rg for all temperatures 7. In Fig. §,
we illustrate that the best choice of (4is that ensures
this collapse is (gis = 0.91 + 0.01. We quantify the
spread of the functions Bgi(r, T)/r?Stst around their
mean value for different values of (icst by computing thg

) 2¢ s 2¢
function P (¢) = S, (e eIt )
withr; = 1,...,5, for the 5 lowest studied temperatures.
The resulting function has a minimum in ¢ = 0.91, as
shown in the inset of Fig. 8.
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Figure 8. Numerical collapse of the excess roughness, described in the text, for values (test of (4is ranging from 0.89 to 0.93.
The value achieving the best collapse is Cais = 0.91. At 0.91 the function Fr o(¢) (see text) has a minimum, as shown in the
inset. The different dashed lines correspond to the value of a indicated in the caption.
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