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1 Pharmacological modulator titration
To determine which concentration of the inhibitors would be most effective without significantly affecting cell mortality,
separate titrations were conducted for each of the compounds on fully confluent healthy Rat1 cell cultures. Starting with values
commonly used in our previous experiments, the applied concentration was increased in pseudo-logarithmic steps (1x, 2x,
5x, 10x, 20x, etc), up to a killing concentration determined by visual inspection of the cells after 24 hours of exposure, in
comparison with cells prepared at the same time under identical conditions without inhibitor exposure.

Inhibitor effects on cell growth, morphology, and mortality were evaluated based on the presence and extension of
lamelipodia, the distance between cell nuclei, loss of confluence, and of course the amount of dead cells. For colchicine, the
initial concentration of 0.32 µM did not affect cell mortality, but morphology effects of a more rounded and globular cell
shape were beginning to be apparent. At higher concentrations, these morphology changes were more significant, but we also
observed significant mortality increase above 0.625 µM, leading us to conclude that the original concentration of 0.316 µM was
already at the optimal value. For the cytochalasin B, starting from a concentration of 0.1 µM, cell mortality increased sharply
from less than 5% to more than 30% for 0.5 to 1 µM, and the colony was seriously depopulated (50% mortality at 2 µM).
We therefore chose an effective concentration of 0.5 µM. The toxicity of meclofenamic acid was likewise easily decided, the
mortality again increasing rapidly from less than 5% to more than 80% between 50 and 100 µM, leading us to chose an effective
concentration of 50 µM. Finally, with forskolin, we did not observe significant effects on cell mortality. At 5 µM we began to
see apparent elongation of the cells. These effects appeared to saturate at 10 µM, which was therefore the concentration chosen
for the experiments.We generally observed that at concentrations approaching the killing concentration, cells appear to shrink
and we begin to observe loss of confluence with increasing amounts of empty space between the cells. The cells also detached
readily from the substrate surface, dying and floating above the rest of the colony.

2 Image processing
Each of the 1000 x 1000 px images acquired using the Leica DM6000 were indexed by the x,y position of the motorised sample
stage (the vertical height z was kept constant once the desired focal plane was established), allowing us to stitch the individual
images in the frame matrix into a full panorama of the proliferating front, as shown in Fig. 1(a), using an in-house developed
Python algorithm. To fully discriminate the cell colony from the background the original greyscale fluorescence images are
binarised using the Otsu algorithm and the brightness histogram for the panorama, as seen in Fig. 1(b), with the colony in
white. As a result of varying GFP expression between cells, the binarisation still leaves some dark areas behind the cell front,
necessitating a “hole filling” step carried out with the Scipy function, “binary_fill_holes” , which leads to the image shown in
Fig. 1(c). In this image, we identify the cell culture as the largest group of connected white pixels, obtained using the Scikit
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Forskolin Cell mortality
2 µM Negligible (<5%)
5 µM Negligible (<5%)
10 µM Negligible (<5%)
20 µM Significant (30%)

Colchicine Cell mortality
0.32 µM Negligible (<5%)
0.63 µM Significant (10%)
1.25 µM Significant (50%)
3.20 µM Significant (90%)

Cytochalasin B Cell mortality
0.1 µM Negligible (<5%)
0.25 µM Negligible (<5%)
0.50 µM Negligible (<5%)
1.00 µM Significant (30%)
2.00 µM Significant (50%)

MFA Cell mortality
10 µM Negligible (<5%)
25 µM Negligible (<5%)
50 µM Negligible (<5%)
100 µM Significant (80%)
250 µM Significant (80+%)

Table 1. Results of individual toxicity titrations to establish the final concentration (indicated in bold) of the inhibitors used in
the study.

“label” function. The set of x,y coordinates of the front position is finally obtained using the Scikit function “find_contours”,
and can be seen in Fig. 1(d), overlaid on the original fluorescence microscopy image the cell colony.

3 Monovalued approximation
The extracted front position follows the contours of the individual cells, and shows small overhang features where a single cell
or small clusters of a few cells at the edge of the colony orient somewhat diagonally. However, the framework of disordered
elastic systems, with an analysis of the correlation function B(r) of relative displacements ∆u(r), is only applicable in the case
of a univalued interface, meaning that elements such as overhangs, holes, and islands cannot be treated within this approach.
We therefore approximate the extracted front position by a univalued function.

This correction is carried out using 3 different approaches, as shown in Fig. 2: ‘outer’ contour (yellow), choosing the
highest value of u(z) if multiple points of the front are present at a given lateral coordinate z; ‘inner’ contour (green), choosing
the lowest value of u(z) if multiple points of the front are present at a given lateral coordinate z; and ‘sum’ contour (blue),
adding all the pixels of the colony at a given lateral coordinate z to obtain an effective univalued u(r).

As can be seen in Fig. 2(a), the roughness B(r) calculated for each of these corrected fronts shows small differences at
sub-cell lengthscales, but these become insignificant by the time the behaviour at few-cell lengthscales is examined. Since the
sum approach effectively smooths the interface, to preserve at least partially the effect of the overhangs, which are clearly a
feature of the biological system, we chose to use the outer contour for all the analysis presented in this study.

This results in abrupt but still univalued ‘jumps’ in the front position. In order to estimate the impact of these jumps on the
front geometry, we subtracted the outer and inner contours of the front, and extracted the statistics of the resulting deviations
from a straight line. As can be seen in Fig. 3(a,b), the jumps, reflecting the original overhangs, are generally limited to at most a
width of 8 µm (i.e. less than the characteristic cell size) and an average height of 200 µm (i.e. approximately 10-12 cells).

4 Rounding of the initial configuration
During the lift-off patterning, the flexibility of the silicone insert used to demarcate the initial position of the cell front in a
confluent cell culture can lead to a rounded arc geometry rather than a straight line configuration. This arc corresponds to a
segment of a circle with a radius of approximately 1 m, which can be quite precisely overlaid over the initial front position, as
shown in Fig. 4(a), and contributes an identifiable artefact to the calculation of the front roughness B(r). As can be seen in
Fig. 4, B(r) for such a 1 m radius circle arc shows a power law growth, with a roughness exponent ζ = 1. However, the initial
roughness levels are over 4 orders of magnitude lower than that of the cell front itself, starting at approximately 2×10−4 µm2

at r = 1 µm. The roughness increases to 3×104 at r = 30mm, the highest available lengthscale of the analysis. While this
artefact, when present, becomes the dominant contribution to the experimental observations above r = 2 mm, and affects to
a lesser degree the roughness of the cell front above 500 µm, it does not affect our analysis of the double power law growth
behaviour with very different roughness exponents at subcell (4–18 µm) and few-cell lengthscales (80–180 µm).
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Figure 1. Image processing to obtain front position. The fluorescence microscopy image (a) is binarised using the Otsu
algorithm (b), and fluorescence variations corrected with a “hole filling” step (c). The colony is identified as the largest
connected island on the image and the front position (green) is extracted as its lower contour, shown overlaid on the original
fluorescence image (d).

Figure 2. Univalued correction of front position. (a) Cell front roughness B(r) extracted after correction of the intermittent
overhangs using the ‘outer’ (yellow), ‘inner’ (green), and ‘sum’ (blue) contours shows only very minor differences at subcell
lengthscales.
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Figure 3. Statistics of jump features resulting from the correction of overhangs in the cell front position. (a) Distribution of
jump widths along the cell front. No overhangs wider than approximately a half cell size are observed. (b) Distribution of
average jump heights perpendicular to the cell front. (c) Distribution of the interjump separations along the cell front.

Figure 4. (a) Fluorescence images of the cell front (GFP-stained cytoplasm), with the extracted front position (red), overlaid
with the circle segment approximation (blue). (b) Roughness B(r) calculated for the three different overhang correction
approaches, and of the circle segment used to approximate the initial position resulting from a slight bending of the flexible
silicone insert.
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Figure 5. Reproducibility of roughness analysis. Roughness function B(r) computed for three experimental realisations of the
cell front under control conditions (discontinuous lines), and the average roughness (solid line) at different evolution times (a)
t = 0, (b) 20, and (c) 40 hours.

5 Reproducibility of roughness analysis
Our previous studies of physical interfaces have shown that sufficiently long individual fronts, or sufficient different iterations
of shorter fronts are necessary to accurately extract the value of the roughness exponent ζ 1, 2. The relatively large cell front
panoramas obtained in our experiments (length L∼ 216 px or ∼ 5cm) provide ample statistics for the analysis of the roughness
B(r), restricted to r ≤ L

2 , and thus a high level of confidence in its accuracy.
As a further test, and to check the reproducibility of the experimental protocol, we repeated each experiment three times

under control conditions to obtain the time evolution of three separate cell front panoramas over 40 hours. For each of
these realizations i (i = 1,2,3), we obtain the functions ui,t(r) describing the position of the cell-front after an evolution time
t = 0,4,8, · · ·40 hours. We compute the roughness Bi,t(r) for each of these fronts, and the average Bt(r) = 1

3 ∑
3
i=1 Bi,t(r). over

the three realizations i at the same time t. As shown in Fig. 4, the roughness does not appear to change significantly from one
realisation to the other (apart from the rounding artefact present in one of the realisations, as discussed in Sect. 4), and after a
long evolution time, the roughness obtained for the three realisations appears to converge to the average value.

6 Evolution to steady state roughness under control conditions
During our observations of their proliferation the cell fronts are maintained in-situ under the microscope, without changing
the medium or adding nutrients. We therefore limited our discussions of the time evolution of the fronts in the main paper
to 40 hours, to ensure that chemical depletion did not play a role in the observed cell behaviour. However, to establish when
significant cell death and deterioration of the colony does occur, we also followed a smaller set of fronts for longer periods. In
pharmacologically modulated cell fronts, this occurs already at 60–70 hours, while under control conditions cell fronts appear
healthy and proliferate beyond 100 hours.

The results of our longest experiments can be seen in Fig. 6(a,b), following the average position and roughness, respectively,
of a single front for 112 hours under control conditions. The front proliferates with decreasing speed over the full period of
observation, approximately following a logarithmic time dependence, although increased acceleration is observed at 12–18
hours, and very little proliferation appears to occur beyond 100 hours. The roughness B(r) calculated at subcell lengthscales
(r = 10 µm, blue) remains essentially constant throughout the measurement, suggesting a steady state which is already reached
by the time the initial configuration of the experiment is established, and which could be expected for a roughness determined
largely by intracellular interactions. At few-cell lengthscales (r = 100 µm, red), on the other hand, the roughness increases over
the first 24 hours from an initial lower value reflecting the artificially flat configuration induced by the removal of the insert.
After approximately 24–30 hours, the value of B(r) appears to also reach a steady state, with no significant increase, despite the
fact that the front continues to proliferate with no noticeable deterioration or cell death.

7 Extracting the roughness exponent
One of the most important features of the roughness function B(r) is that it provides information about the interactions present
in a system. To capture this information, two correlated elements are necessary. First, the spatial regions where the function
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Figure 6. Evolution of a single proliferating Rat1 epithelial cell front followed over 112 hours (a) The average position of the
cell front, used to track its displacement during proliferation, shows a close to logarithmic dependence as a function of time (b)
The roughness B(r) calculated at r = 10 µm (subcell) and r = 100 µm (few-cell) lengthscales, in blue and red, respectively. A
steady state with little increase in the roughness is observed already from the initial configuration at subcell lengthscales, and
beyond approximately 30 hours at few-cell lengthscales.

follows a power law need to be identified, and second, the fit of the function with a power law should be done over this region
to extract the roughness exponent describing the interactions at this lengthscale.

In the theory of disordered elastic systems, where, for example, a system evolves as result of the competition between the
elasticity of the interface c, the disorder or pinning, and thermal fluctuations proportional to the temperature T , it is well known
that the roughness function at short lengthscales is dominated by thermal fluctuations, and follows a power law behavior T

c r2ζth ,
where the roughness exponent is given by the thermal exponent ζth = 0.5. However, at large lengthscales B(r) is dominated by
disorder, if present, and depending on the disorder type follows a different power law proportional to ∼ r2ζdis . For example, for
random bond disorder the scaling is governed by ζdis =

2
3 .

In the case of biological systems, the nature of the interactions between cells and how they affect the dynamics and statics
of a cell front is not yet well established, and is what motivates the current study. In order to apply the theory of disordered
elastic systems to effectively capture the information about the interactions in a growing colony of cells, we identify the regions
where B(r) follows a power law behavior as follows: we perform a weighted fit of logB(r) with a linear function of r over
the region [logri, log(ri +wi)], where ri is the starting point and wi is the length of the fitting region chosen according to the
initial value ri, in order to always obtain a window of equivalent size on a logarithmic scale for each starting point (see Fig. 7).
The weights used for the fit are computed as the uncertainties ∆y associated to each point of y = logB(r). These uncertainties
can be estimated as ∆y = 1

B(r)∆B(r), where ∆B(r) = std(all observed values)√
number of observations-1

, and the number of observations decreases when r is

increased (observations=total interface length - r). For each fit we compute the goodness of the fit through R2.
As can be seen in Fig. 8, which shows R2 vales for fits of the roughness B(r) at t = 0 hours averaged for the three fronts

under control conditions, two regions emerge where the power law fits with B(r)∼ rζ are highly pertinent. At short lengthscales
(for small ri) we obtain very high R2 values above 0.9998, even for relatively large window sizes wi. R2 then abruptly decreases,
and a second local maximum with values around 0.9992 is reached at ∼ 80µm. This behaviour suggests two separate power
law scaling regimes are present in B(r).

To choose the best window size for each region we complemented the mathematical consideration of R2 with additional
biological arguments. For ri = 4µm, even if the goodness of the fit is high up to 50µm, we restricted the fit to not exceed the
average length of a cell ∼ 20 µm, in order to capture the behavior of B(r) at subcell lengthscales, thus defining a first region
I = [4,16]µm. For the second region, we considered that important mechanisms of intercell communication, in a wide range of
mammalian epithelial cells, have a range of at most a few cell lengths - for example the cell networks reported for gap junction
communication in rat kidney cells3 as well as mechanical interactions via the cytoskeleton and force transfer via the substrate,
which were found to decrease linearly with distance4. We note here that the inhomogeneous distribution of cell division we
observed, which seemed to be more prevalent in cells close, but not directly at the colony edge, can also be considered as an
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Figure 7. To determine the regions where the roughness function follows a power law behavior, we explored different ranges
[ri,ri +wi] to fit B(r). Here, 3 different power law fits of the roughness of the initial front configuration at t = 0 under control
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Figure 8. Identifying power law scaling regimes. R2 obtained for the weighted fit of logB(r) averaged for the three fronts
under control conditions at t = 0. The fit was performed over the regions [ri,ri +wi], where wi was chosen for each ri to obtain
an equivalent window size on a logarithmic scale, independently of ri. Two regions with high R2 are observed, one at short
lengthscales, and the other with a local maximum at ri ∼ 80µm, separated by a region of low r2, suggesting two separate power
law scaling regimes.
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Figure 9. (a) Roughness of a cell colony under control conditions (same data as shown in Fig. 1(c) of the main paper) and (b)
roughness of an elastic line evolving according to the Edwards–Wilkinson equation at time intervals of t = 103.

interaction at this range. We therefore restricted the second region to II = [80,180]µm. For all the experimental cell fronts, fits
of B(r) were performed over these two regions I and II to obtain ζI and ζII .

As a further check to ensure that the second region of power law scaling was not a spurious artefact of crossover between a
single power law scaling regime and a flat function, we also compared our experimental results to simulations of specifically
such a situation, an elastic line evolving in a thermal bath from an ideal flat configuration to an equilibrium rough configuration
in the Edwards-Wilkinson model (E–W).

The E–W elastic line model describes the evolution of an interface u(y, t) with elasticity c subject to a thermal bath of
temperature T with friction η :

η∂tu(y, t) = c∂
2
y u(y, t)+ξ (y, t). (1)

In this equation, ξ is a Gaussian white noise of zero average and correlations 〈ξ (y2, t2)ξ (y1, t1)〉= 2ηT δ (y2− y1)δ (t2− t1).
For an initially flat elastic line the correlations in its geometry will evolve in time as a result of the competition between the

interface elasticity and the thermal fluctuations5. For finite times, a memory of the initial conditions remains in the roughness
B(r, t). As t grows correlations spread along the interface6.

B(r, t) =
Tr
c

[
1− 1√

πzr

(
e−z2r2 −1

)
− 2√

π

∫ zr

0
e−t2

dt
]
. (2)

The roughness of the elastic line is then characterized by two well-defined regimes: a power law T
c r2ζth at short lengthscales,

and a flat function at large scales. In order to check if the crossover between these two regimes could lead to a spurious second
power law regime, we analyze the roughness of an elastic line described by the arbitrary chosen values c = 1, T = 50, η = 1.
In Fig. Fig. 9 we show the time evolution of the roughness at time intervals of 1000 (in arbitrary units). For comparison we also
show the same data as presented in Fig. 1(c) of the main paper for the roughness of a cell colony under control conditions.

We analyze the roughness of the elastic E–W line using the same approach as described above for the cell fronts. The
goodness of fit R2 for the elastic line at t = 1000 is shown in Fig.10, with a clear maximum observed at short lengthscales,
corresponding to the expected region of power law scaling. The goodness of fit then drops when approaching the crossover
between the power law scaling at short lengthscales and the flattening at large ones. Finally, when the fitting window covers
only large lengthscales at which the configuration of the E–W line is completely flat, R2 rises again. We note that since there
are no fluctuations in our analytical data, at large lengthscales R2 takes infinite values (there is no difference between the real
data and the predicted data). We therefore forced the R2 values to one instead of infinity to emphasise that in this interval there
is a perfect fit by a power law with exponent 0.

Finally, an alternate procedure is to extract the roughness exponent ζ in reciprocal space, from the power law scaling of the
structure factor S(q)

S(q, t) = ũ(q, t)ũ(−q, t), (3)

where

ũ(q, t) =
1
L

∫
dzu(z, t)e−iqz (4)
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Figure 10. Our method to identify power law scaling regimes applied to an Edwards–Wilkinson elastic line. We show R2

obtained for the fit of logB(r) given by Eq. 2. We detect only one power law scaling region with high R2 at short lengthscales,
and a second maximum of R2 for at high lengthscales where the elastic line is flat (i.e. perfectly fitted by a power law with
exponent 0).
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Figure 11. Evolution of the average structure factor S(q) for the three Rat1 epithelial fronts under control conditions.
Roughness exponent values are extracted from intervals corresponding to the real space regions I (subcell lengthscale, dark
green) and II (few-cell lengthscales,red).

is the Fourier transform of the displacement field u(z, t) defining the interface position. Formally, the structure factor S(q) and
the roughness correlation B(r) contain the same geometrical information and are related through

B(r, t) =
∫ dq

π
[1− cos(qr)] S(q, t). (5)

While this approach is more prone to noise, where sufficient statistics are available, it provides generally more reliable estimates
of ζ than the real space autocorrelation functions7, and can fully address aspects of anomalous scaling not accessible via
B(r)2, 8–12 In the structure factor, as shown in Fig. 11, we again observe two regions of power law scaling. Extracting the
roughness exponent values from intervals corresponding to the real space regions I (subcell lengthscale, dark green) and II
(few-cell lengthscales, red) we obtain ζI = 0.56±0.01 and ζII = 0.29±0.08, consistent with the values obtained from B(r).

8 Probability distribution function of relative displacements
As a check of the nature of the interface and the symmetry of its relative displacements, we carried out a multiscaling
analysis13, 14 to evaluate the probability distribution function (PDF) of relative displacements ∆u(r,z) and its characteristic
scaling properties reflected in the behavior of its central moments15:

σn(r) = 〈|∆u(r)|n〉 ∼ rnζn , (6)
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Figure 12. Probability distribution function of relative displacements ∆u(r,z) for the three Rat1 epithelial cell fronts under
control conditions, shown for r = 10, 100, 1000, and 10000 µm at (a) 0, (b) 12, (c) 24m and (d) 44 hours after the removal of
the silicone insert.

where ζn are the associated scaling exponents for the nth moment. For 1-dimensional monoaffine interfaces, the PDF is
Gaussian16–18, and the roughness function B(r)≡ σ2(r)∼ r2ζ is sufficient to fully characterize the scaling, with a single-valued
exponent ζn = ζ ∀n.

As shown in Fig. 12, the PDFs obtained for different r values and over the time of evolution of the front are highly
symmetric for r above 100 µm, although the PDF at lowest r = 10µm values shows slight asymmetry. Consistent with the
evolution of B(r) discussed in the main paper, we see that for small lengthscales r, the PDF remains essentially unchanged
with time. For larger lengthscales r = 10000, the initial PDF falls off from a Gaussian behaviour for small ∆u(r) to a steady
background level, related to the effective flattening of the initial front configuration at high lengthscales. As the front evolves
and roughens also at the higher lengthscales, the PDF for r = 10000 becomes more Gaussian.

The third (skewness) and fourth (kurtosis) moments show two regimes of power law scaling at subcell and few-cell
lengthscales in regions I and II as defined in the main paper, from which the characteristic exponents ζ3 and ζ4 can be extracted.
As shown in Figs. 13, 14, the value of the scaling exponents in region II appear to be universal, but diminish for region I.

9 Effective flattening by filling of cavities
During the measurements, we occasionally found large cavities at the edge of the colony, as shown in Fig. 15(a). The presence of
these features significantly affected the dynamics of the colony, with cells rapidly moving towards the cavity and progressively
filling it, as can be seen in Fig. 15(b,c), with the inflowing cells aligned radially towards the cavity center. Only when the cavity
was filled did this section of the front continue to move outward again, as previously observed by Kim et. al.19. While we
excluded affected segments of the fronts containing such features from the statistical analysis of roughness and dynamics, we
believe that they are potentially related to the steady-state saturation of B(r) at higher lengthscales.

10 Numerical simulations
The numerical simulations of proliferating cell fronts were performed by using the epicell package, developed at the University
of Geneva20, adapted to the modeling of mechanical properties of two-dimensional cell sheets21, 22.

The epicell model used is based on solving the following dimensionless Hamiltonian on a regular grid of two-dimensional
hexagonal cells:

H =
1
2 ∑

cell α

(
Aα −1

)2
+

1
2

Γ ∑
cell α

L2
α −Λ ∑

edge ei, j

Li, j

with H = H
K·(A0)

2 , Aα = Aα

A0 , Γ = Γ

K·A0 , Lα = Lα

A0 , Λ = Λ

K·(A0)
3
2

, Li, j =
Li, j√

A0 , H the Hamiltonian, A0 the preferred cell area, K the

cell area elasticity, Γ the cell perimeter contractility, Λ the inter-cell adhesion represented by the cell-cell edge tension, Aα the
area of cell α , Li, j the length of the inter-cell edge ei, j. The re-normalization of the Hamiltonian with the constraint that all
cells are of the same fixed type, elasticity and preferred size, yields a two-variable system, with reduced parameters Γ and Λ.

Additionally, the model was modified to include a non-trivial cell division descriptor, favoring divisions to occur just behind
the cell front, in line with out empirical observations. This was implemented through setting a weight prefactor to the division
probability following Wdiv = 0 at the cell front (d = 0) and Wdiv = exp− d−1

3 for cells with distance d behind the front.
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Figure 15. Cavity filling by collective/directed cell flow. Fluorescence images of a cell front, imaged every 4 hours, with a
cavity initially present (a), progressively filled by the rapid inflow of cells from the bulk of the colony (b). Only upon complete
filling of the cavity (c) does the front start to move outward again.
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Parameters and execution
Seventeen parameters are necessary to run the freeBoundary application included in the epicell package. They are listed below
with their description and values taken for the current study:

• modelId: The model dictates which cells are selected for division in priority. Here, set to 3, so that the largest and less
compressed cells would divide first.

• nRep: Number of replicates of the cell front, here set to 1.

• myseed: Seed for the random number generator, here set to 1.

• K: The cell area elasticity parameter K. Set to 2.256 ·109N/m3 following previous studies on mechanical properties of
cell sheets.

• A0: Preferred cell area A0. Set to 3.14 ·10−10m2, following the experimental observations on the average size of the Rat1
cell line.

• lambdaNorm: Normalized inter-cell adhesion, Λ. Parameter explored in phase space from −1.975 to 0.5 in steps of
0.025.

• gammaNorm: Normalized cell perimeter contractility, Γ. Parameter explored in phase space from −0.3 to 0.675 in
steps of 0.025.

• ncols: Number of columns of cells within the cell sheet. Set to 20 here to have a thin but long cell sheet.

• nrows: Number of rows of cells within the cell sheet. Set to 103 here to have a thin but long cell sheet.

• xmin: Left hard boundary position. Set to 0 here so that the system imposes boundaries automatically after the initial
relaxation step.

• xmax: Right hard boundary position. Set to 0 here so that the system imposes boundaries automatically after the initial
relaxation step.

• ymin: Bottom hard boundary position. Set to 0 here so that the system imposes boundaries automatically after the initial
relaxation step.

• nbDivMax: The maximum number of cell divisions before the simulation terminates. Set here to 105 to allow a large
number of divisions compared to the number of cells in the sheet.

• elasticCoef: Elastic coefficient of the hard boundaries, used in this work to mimic an infinite in-compressible cell sheet
on three of the sides as to promote growth along one direction. Set to 10 here to provide a hard boundary.

• sdLambda: Standard deviation of the inter-cell adhesion Λ. Set to 0 in the current study.

• sdGamma: Standard deviation of the cell perimeter contractility Γ. Set to 0 in the current study.

• boundaryLambda: Normalized line tension of the cell sheet edges, used for simulating an interaction of the cells with
the external media. Set to 0 in the current study.

The freeBoundary code was executed on the University of Geneva cluster, Baobab, with a time constraint before termination
of 12 hours. The 4000 Λ,Γ parameter pairs were computed in parallel and 881 simulations were successful. Unsuccessful
simulations were either due to nonphysical parameters (1411 simulations), impossible convergence at the initial relaxation
stage (1050 simulations), nonphysical mechanical behaviour of vertices (651 simulations), and finally unexpected simulation
terminations due to specific pathological parameter sets (7 simulations). The outcome of all parameter pairs is shown in Fig. 16,
with successful simulations labeled as OK.
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Figure 16. Complete simulation space with 4000 Λ,Γ parameter pairs. Out of this, 881 simulations were successful, labeled
as OK. The unsuccessful simulations either occurred due to nonphysical parameters (1411 with infinite forces and 651 with
nonphysical vertices) or due to non-convergence during the initial relaxation step (1050 simulations). A minority, 7 simulations,
ended unexpectedly due to specific pathological parameter sets.

Phase diagram investigation
Our study focused on the successfully simulated region of the phase diagram, as shown in Fig. 17. The phase diagrams for
the asymptotic roughness exponent ζ , quality of fit R2 for the asymptotic exponent, total front displacement from its initial
position, velocity of the front over the final 100000 iterations, and the number of iterations for each simulation are shown in Fig.
17(a,c,e,g,i) respectively.

As discussed in the main text, the analysis of simulation parameters enables the extraction of two branches of physical
observables, with the lower branch exhibiting pathological behaviour including quasi-nonexistent front displacement/velocity,
periodic features in the roughness, and large error during extraction of the roughness exponent ζ . Through the combination
of the phase diagrams, a region of stability was defined visually as a red bounding polygon, with edges located at (Λ,Γ) =
[(0,0.03),(0,0.06),(−1.975,0.49),(−1.975,0.27)]. This filtering enables the removal of pathological scenarios, and allows
for a better selection of the appropriate models for comparison with in-vitro experiments. For instance, the overall average
roughness exponent ζ = 0.69 as shown in the distribution Fig. 17(b) is highly asymmetric, whereas sampling ζ values in the
region of stability yields an average roughness exponent ζ = 0.74 with a smaller error and a more symmetric distribution.

It is also noteworthy that whilst ζ and the number of iterations following the initial relaxation step (Fig. 17(i,j)) seem to be
concentrated around specific values, the total displacement and final velocity in Fig. 17(e,f,g,h) are more evenly distributed, and
in fact tend to increase with decreasing inter-cell adhesion and cell contractility.
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Figure 17. Simulation observable phase diagrams and their corresponding distributions. The red polygons delimit the region
of stability defined from visual observation of the extracted physical parameters. (a) Phase diagram of the asymptotic
roughness exponent ζ , computed by fitting the time evolution of the roughness exponents of fronts. (b) Distribution of the ζ

values, showing a large spread, asymmetry and a mean at ζ = 0.69. (c) Goodness-of-fit estimate R2 for the ζ fits,
demonstrating a large region of high quality fits within the region of stability. (d) Distribution of ζ values within the region of
stability, with a mean of ζ = 0.74. (e) Phase diagram and (f) region of stability distribution of the total front displacement. (g)
Phase diagram and (h) region of stability distribution of the final front velocity. (i) Phase diagram and (j) region of stability
distribution of the number of iterations for each simulation parameter pair following initial relaxation.
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